The antibiotic kasugamycin mimics mRNA nucleotides to destabilize tRNA binding and inhibit canonical translation initiation (original) (raw)
Umezawa, H., Hamada, M., Suhara, Y., Hashimoto, T. & Ikekawa, T. Kasugamycin, a new antibiotic. Antimicrob. Agents Chemother.5, 753–757 (1965). CASPubMed Google Scholar
Suhara, Y., Maeda, K. & Umezawa, H. Chemical studies on kasugamycin. V. The structure of kasugamycin. Tetrahedr. Lett.12, 1239–1244 (1966). ArticleCAS Google Scholar
Hamada, M. et al. Antimicrobial activity of kasugamycin. J. Antibiot.18, 104–106 (1965). CASPubMed Google Scholar
Takeuchi, T. et al. Pharmacology of kasugamycin and the effect on Pseudomonas infection. J. Antibiot.18, 107–110 (1965). CASPubMed Google Scholar
Tanaka, N., Yoshida, Y., Sashikata, K., Yamaguchi, H. & Umezawa, H. Inhibition of polypeptide synthesis by kasugamycin, an aminoglycosidic antibiotic. J. Antibiot.19, 65–68 (1966). CASPubMed Google Scholar
Masukawa, H., Tanaka, N. & Umezawa, H. Inhibition by kasugamycin of protein synthesis in Piricularia oryzae. J. Antibiot.21, 73–74 (1968). ArticleCAS Google Scholar
Cassan, M., Berteaux, V., Angrand, P.O. & Rousset, J.P. Expression vectors for quantitating in vivo translational ambiguity: their potential use to analyse frameshifting at the HIV gag-pol junction. Res. Virol.141, 597–610 (1990). ArticleCAS Google Scholar
Van Buul, C.P., Visser, W. & Van Knippenberg, P.H. Increased translational fidelity caused by the antibiotic kasugamycin and ribosomal ambiguity in mutants harboring the ksgA gene. FEBS Lett.177, 119–124 (1984). ArticleCAS Google Scholar
Davies, J., Gilbert, W. & Gorini, L. Streptomycin, suppression, and the code. Proc. Natl. Acad. Sci. USA51, 883–890 (1964). ArticleCAS Google Scholar
Okuyama, A., Machiyama, N., Kinoshita, T. & Tanaka, N. Inhibition by kasugamycin of initiation complex formation on 30S ribosomes. Biochem. Biophys. Res. Commun.43, 196–199 (1971). ArticleCAS Google Scholar
Poldermans, B., Goosen, N. & Van Knippenberg, P.H. Studies on the function of two adjacent N6,N6-dimethyladenosines near the 3′ end of 16S ribosomal RNA of Escherichia coli. I. The effect of kasugamycin on initiation of protein synthesis. J. Biol. Chem.254, 9085–9089 (1979). CASPubMed Google Scholar
Chin, K., Shean, C.S. & Gottesman, M.E. Resistance of lambda cI translation to antibiotics that inhibit translation initiation. J. Bacteriol.175, 7471–7473 (1993). ArticleCAS Google Scholar
Moll, I. & Bläsi, U. Differential inhibition of 30S and 70S translation initiation complexes on leaderless mRNA by kasugamycin. Biochem. Biophys. Res. Commun.297, 1021–1026 (2002). ArticleCAS Google Scholar
Okuyama, A., Tanaka, N. & Komai, T. The binding of kasugamycin to the Escherichia coli ribosomes. J. Antibiot.28, 903–905 (1975). ArticleCAS Google Scholar
Woodcock, J., Moazed, D., Cannon, M., Davies, J. & Noller, H.F. Interaction of antibiotics with A- and P-site-specific bases in 16S ribosomal RNA. EMBO J.10, 3099–3103 (1991). ArticleCAS Google Scholar
Helser, T.L., Davies, J.E. & Dahlberg, J.E. Change in methylation of 16S ribosomal RNA associated with mutation to kasugamycin resistance in Escherichia coli. Nat. New Biol.233, 12–14 (1971). ArticleCAS Google Scholar
Helser, T.L., Davies, J.E. & Dahlberg, J.E. Mechanism of kasugamycin resistance in Escherichia coli. Nat. New Biol.235, 6–9 (1972). ArticleCAS Google Scholar
Vila-Sanjurjo, A., Squires, C.L. & Dahlberg, A.E. Isolation of kasugamycin resistant mutants in the 16 S ribosomal RNA of Escherichia coli. J. Mol. Biol.293, 1–8 (1999). ArticleCAS Google Scholar
Carter, A.P. et al. Functional insights from the structure of the 30S ribosomal subunit and its interactions with antibiotics. Nature407, 340–348 (2000). ArticleCAS Google Scholar
Pioletti, M. et al. Crystal structures of complexes of the small ribosomal subunit with tetracycline, edeine and IF3. EMBO J.20, 1829–1839 (2001). ArticleCAS Google Scholar
Wilson, D.N. Antibiotics and the inhibition of ribosome function. in Protein Synthesis and Ribosome Structure (eds. Nierhaus, K.H. & Wilson, D.N.) 449–527 (Wiley-VCH, Weinheim, Germany, 2004). Google Scholar
Schuwirth, B.S. et al. Structures of the bacterial ribosome at 3.5 Å resolution. Science310, 827–834 (2005). ArticleCAS Google Scholar
Moazed, D. & Noller, H.F. Interaction of antibiotics with functional sites in 16S ribosomal RNA. Nature327, 389–394 (1987). ArticleCAS Google Scholar
Yusupov, M.M. et al. Crystal structure of the ribosome at 5.5 Å resolution. Science292, 883–896 (2001). ArticleCAS Google Scholar
Jenner, L. et al. Translational operator of mRNA on the ribosome: how repressor proteins exclude ribosome binding. Science308, 120–123 (2005). ArticleCAS Google Scholar
Gnirke, A. & Nierhaus, K.H. tRNA binding sites on the subunits of Escherichia coli ribosomes. J. Biol. Chem.261, 14506–14514 (1986). CASPubMed Google Scholar
Heus, H.A., Formenoy, L.J. & Van Knippenberg, P.H. Conformational and thermodynamic effects of naturally occurring base methylations in a ribosomal RNA hairpin of Bacillus stearothermophilus. Eur. J. Biochem.188, 275–281 (1990). ArticleCAS Google Scholar
Van Charldorp, R., Verhoeven, J.J., Van Knippenberg, P.H., Haasnoot, C.A. & Hilbers, C.W. A carbon-13 nuclear magnetic resonance study of the 3′-terminus of 16S ribosomal RNA of Escherichia coli specifically labeled with carbon-13 in the methylgroups of the m26Am26A sequence. Nucleic Acids Res.10, 4237–4245 (1982). ArticleCAS Google Scholar
Hobartner, C., Ebert, M., Jaun, B. & Micura, R. RNA two-state conformation equilibria and the effect of nucleobase methylation. Angew. Chem. Int. Edn Engl.41, 605–609 (2002). ArticleCAS Google Scholar
Vila-Sanjurjo, A. & Dahlberg, A.E. Mutational analysis of the conserved bases C1402 and A1500 in the center of the decoding domain of Escherichia coli 16 S rRNA reveals an important tertiary interaction. J. Mol. Biol.308, 457–463 (2001). ArticleCAS Google Scholar
Hirashima, A., Childs, G. & Inouye, M. Differential inhibitory effects of antibiotics on the biosynthesis of envelope proteins of Escherichia coli. J. Mol. Biol.79, 373–389 (1973). ArticleCAS Google Scholar
Tanaka, N., Yamaguchi, H. & Umezawa, H. Mechanism of kasugamycin action on polypeptide synthesis. J. Biochem.60, 429–434 (1966). ArticleCAS Google Scholar
Okuyama, A. & Tanaka, N. Differential effects of aminoglycosides on cistron-specific initiation of protein synthesis. Biochem. Biophys. Res. Commun.49, 951–957 (1972). ArticleCAS Google Scholar
Kozak, M. & Nathans, D. Differential inhibition of coliphage MS2 protein synthesis by ribosome- directed antibiotics. J. Mol. Biol.70, 41–55 (1972). ArticleCAS Google Scholar
Studer, S. & Joseph, S. Unfolding of mRNA secondary structure by the bacterial translation initiation complex. Mol. Cell22, 105–115 (2006). ArticleCAS Google Scholar
de Smit, M.H. & van Duin, J. Control of translation by mRNA secondary structure in Escherichia coli. A quantitative analysis of literature data. J. Mol. Biol.244, 144–150 (1994). ArticleCAS Google Scholar
Moazed, D. & Noller, H.F. Interaction of tRNA with 23S rRNA in the ribosomal A, P, and E sites. Cell57, 585–597 (1989). ArticleCAS Google Scholar
Schäfer, M.A. et al. Codon-anticodon interaction at the P site is a prerequisite for tRNA interaction with the small ribosomal subunit. J. Biol. Chem.277, 19095–19105 (2002). Article Google Scholar
Gualerzi, C.O. & Pon, C.L. Initiation of messenger-RNA translation in prokaryotes. Biochemistry29, 5881–5889 (1990). ArticleCAS Google Scholar
Moll, I. et al. Translation initiation with 70S ribosomes: an alternative pathway for leaderless mRNAs. Nucleic Acids Res.32, 3354–3363 (2004). ArticleCAS Google Scholar
Udagawa, T. et al. Evidence for the translation initiation of leaderless mRNAs by the intact 70 S ribosome without its dissociation into subunits in eubacteria. J. Biol. Chem.279, 8539–8546 (2004). ArticleCAS Google Scholar
Blaha, G. et al. Preparation of functional ribosomal complexes and the effect of buffer conditions on tRNA positions observed by cryoelectron microscopy. Methods Enzymol.317, 292–309 (2000). ArticleCAS Google Scholar
Rheinberger, H.-J., Geigenmüller, U., Wedde, M. & Nierhaus, K.H. Parameters for the preparation of Escherichia coli ribosomes and ribosomal subunits active in tRNA binding. Methods Enzymol.164, 658–670 (1988). ArticleCAS Google Scholar
Sharma, M.R. et al. Interaction of Era with the 30S ribosomal subunit: implications for 30S subunit assembly. Mol. Cell18, 319–329 (2005). ArticleCAS Google Scholar
Schluenzen, F. et al. Structure of functionally activated small ribosomal subunit at 3.3 Å resolution. Cell102, 615–623 (2000). ArticleCAS Google Scholar
Kabsch, W. Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants. J. Appl. Crystallogr.26, 795–800 (1993). ArticleCAS Google Scholar
Collaborative Computational Project, Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr.50, 760–763 (1994).
Brunger, A. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr.54, 905–921 (1998). ArticleCAS Google Scholar
Diaconu, M. et al. Structural basis for the function of the ribosomal L7/12 stalk in factor binding and GTPase activation. Cell121, 991–1004 (2005). ArticleCAS Google Scholar
Ogle, J.M. et al. Recognition of cognate transfer RNA by the 30S ribosomal subunit. Science292, 897–902 (2001). ArticleCAS Google Scholar