Two mature products of MIR-491 coordinate to suppress key cancer hallmarks in glioblastoma (original) (raw)
Hanahan D, Weinberg RA . Hallmarks of cancer: the next generation. Cell 2011; 144: 646–674. ArticleCAS Google Scholar
Dong JT . Chromosomal deletions and tumor suppressor genes in prostate cancer. Cancer Metastasis Rev 2001; 20: 173–193. ArticleCAS Google Scholar
Testa JR, Liu Z, Feder M, Bell DW, Balsara B, Cheng JQ et al. Advances in the analysis of chromosome alterations in human lung carcinomas. Cancer Genet Cytogenet 1997; 95: 20–32. ArticleCAS Google Scholar
Sato M, Takahashi K, Nagayama K, Arai Y, Ito N, Okada M et al. Identification of chromosome arm 9p as the most frequent target of homozygous deletions in lung cancer. Genes Chromosomes Cancer 2005; 44: 405–414. ArticleCAS Google Scholar
Kohno T, Yokota J . Molecular processes of chromosome 9p21 deletions causing inactivation of the p16 tumor suppressor gene in human cancer: deduction from structural analysis of breakpoints for deletions. DNA Repair (Amst) 2006; 5: 1273–1281. ArticleCAS Google Scholar
Sasaki S, Kitagawa Y, Sekido Y, Minna JD, Kuwano H, Yokota J et al. Molecular processes of chromosome 9p21 deletions in human cancers. Oncogene 2003; 22: 3792–3798. ArticleCAS Google Scholar
Gursky S, Olopade OI, Rowley JD . Identification of a 1.2 Kb cDNA fragment from a region on 9p21 commonly deleted in multiple tumor types. Cancer Genet Cytogenet 2001; 129: 93–101. ArticleCAS Google Scholar
Bartel DP . MicroRNAs: target recognition and regulatory functions. Cell 2009; 136: 215–233. ArticleCAS Google Scholar
Calin GA, Croce CM . MicroRNA signatures in human cancers. Nat Rev Cancer 2006; 6: 857–866. ArticleCAS Google Scholar
Nakano H, Miyazawa T, Kinoshita K, Yamada Y, Yoshida T . Functional screening identifies a microRNA, miR-491 that induces apoptosis by targeting Bcl-X(L) in colorectal cancer cells. Int J Cancer 2010; 127: 1072–1080. ArticleCAS Google Scholar
Yan W, Zhang W, Sun L, Liu Y, You G, Wang Y et al. Identification of MMP-9 specific microRNA expression profile as potential targets of anti-invasion therapy in glioblastoma multiforme. Brain Res 2011; 1411: 108–115. ArticleCAS Google Scholar
Parker BC, Annala MJ, Cogdell DE, Granberg KJ, Sun Y, Ji P et al. The tumorigenic FGFR3-TACC3 gene fusion escapes miR-99a regulation in glioblastoma. J Clin Invest 2013; 123: 855–865. CASPubMedPubMed Central Google Scholar
Moore LM, Kivinen V, Liu Y, Annala M, Cogdell D, Liu X et al. Transcriptome and small RNA deep sequencing reveals deregulation of miRNA biogenesis in human glioma. J Pathol 2013; 229: 449–459. ArticleCAS Google Scholar
Fuxe J, Akusjarvi G, Goike HM, Roos G, Collins VP, Pettersson RF . Adenovirus-mediated overexpression of p15INK4B inhibits human glioma cell growth, induces replicative senescence, and inhibits telomerase activity similarly to p16INK4A. Cell Growth Differ 2000; 11: 373–384. CASPubMed Google Scholar
Kim BN, Yamamoto H, Ikeda K, Damdinsuren B, Sugita Y, Ngan CY et al. Methylation and expression of p16INK4 tumor suppressor gene in primary colorectal cancer tissues. Int J Oncol 2005; 26: 1217–1226. CASPubMed Google Scholar
Zhang W, Fuller G . IGFBP2 as a brain tumor oncogene. Cancer Biol Ther 2007; 6: 995–996. Article Google Scholar
Fukushima T, Tezuka T, Shimomura T, Nakano S, Kataoka H . Silencing of insulin-like growth factor-binding protein-2 in human glioblastoma cells reduces both invasiveness and expression of progression-associated gene CD24. J Biol Chem 2007; 282: 18634–18644. ArticleCAS Google Scholar
Lee EJ, Mircean C, Shmulevich I, Wang H, Liu J, Niemisto A et al. Insulin-like growth factor binding protein 2 promotes ovarian cancer cell invasion. Mol Cancer 2005; 4: 7. Article Google Scholar
Wang H, Wang H, Shen W, Huang H, Hu L, Ramdas L et al. Insulin-like growth factor binding protein 2 enhances glioblastoma invasion by activating invasion-enhancing genes. Cancer Res 2003; 63: 4315–4321. CASPubMed Google Scholar
Das S, Srikanth M, Kessler JA . Cancer stem cells and glioma. Nat Clin Pract Neurol 2008; 4: 427–435. ArticleCAS Google Scholar
Hsieh D, Hsieh A, Stea B, Ellsworth R . IGFBP2 promotes glioma tumor stem cell expansion and survival. Biochem Biophys Res Commun 2010; 397: 367–372. ArticleCAS Google Scholar
Lee J, Kotliarova S, Kotliarov Y, Li A, Su Q, Donin NM et al. Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines. Cancer Cell 2006; 9: 391–403. ArticleCAS Google Scholar
Griffero F, Daga A, Marubbi D, Capra MC, Melotti A, Pattarozzi A et al. Different response of human glioma tumor-initiating cells to epidermal growth factor receptor kinase inhibitors. J Biol Chem 2009; 284: 7138–7148. ArticleCAS Google Scholar
Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J et al. Identification of a cancer stem cell in human brain tumors. Cancer Res 2003; 63: 5821–5828. CAS Google Scholar
Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T et al. Identification of human brain tumour initiating cells. Nature 2004; 432: 396–401. ArticleCAS Google Scholar
Dunlap SM, Celestino J, Wang H, Jiang R, Holland EC, Fuller GN et al. Insulin-like growth factor binding protein 2 promotes glioma development and progression. Proc Natl Acad Sci USA 2007; 104: 11736–11741. ArticleCAS Google Scholar
Jin X, Yin J, Kim SH, Sohn YW, Beck S, Lim YC et al. EGFR-AKT-Smad signaling promotes formation of glioma stem-like cells and tumor angiogenesis by ID3-driven cytokine induction. Cancer Res 2011; 71: 7125–7134. ArticleCAS Google Scholar
Mirimanoff RO . High-grade gliomas: reality and hopes. Chin J Cancer 2014; 33: 1–3. ArticleCAS Google Scholar
Verhaak RG, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD et al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 2010; 17: 98–110. ArticleCAS Google Scholar
Cancer Genome Atlas Research N. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 2008; 455: 1061–1068. Article Google Scholar
Rich JN, Reardon DA, Peery T, Dowell JM, Quinn JA, Penne KL et al. Phase II trial of gefitinib in recurrent glioblastoma. J Clin Oncol 2004; 22: 133–142. ArticleCAS Google Scholar
Hegi ME, Diserens AC, Bady P, Kamoshima Y, Kouwenhoven MC, Delorenzi M et al. Pathway analysis of glioblastoma tissue after preoperative treatment with the EGFR tyrosine kinase inhibitor gefitinib—a phase II trial. Mol Cancer Ther 2011; 10: 1102–1112. ArticleCAS Google Scholar
Moore LM, Holmes KM, Smith SM, Wu Y, Tchougounova E, Uhrbom L et al. IGFBP2 is a candidate biomarker for Ink4a-Arf status and a therapeutic target for high-grade gliomas. Proc Natl Acad Sci USA 2009; 106: 16675–16679. ArticleCAS Google Scholar
Wang GK, Hu L, Fuller GN, Zhang W . An interaction between insulin-like growth factor-binding protein 2 (IGFBP2) and integrin alpha5 is essential for IGFBP2-induced cell mobility. J Biol Chem 2006; 281: 14085–14091. ArticleCAS Google Scholar
Png KJ, Halberg N, Yoshida M, Tavazoie SF . A microRNA regulon that mediates endothelial recruitment and metastasis by cancer cells. Nature 2012; 481: 190–194. ArticleCAS Google Scholar
Feng J, Kim ST, Liu W, Kim JW, Zhang Z, Zhu Y et al. An integrated analysis of germline and somatic, genetic and epigenetic alterations at 9p21.3 in glioblastoma. Cancer 2012; 118: 232–240. ArticleCAS Google Scholar
Holmes KM, Annala M, Chua CY, Dunlap SM, Liu Y, Hugen N et al. Insulin-like growth factor-binding protein 2-driven glioma progression is prevented by blocking a clinically significant integrin, integrin-linked kinase, and NF-kappaB network. Proc Natl Acad Sci USA 2012; 109: 3475–3480. ArticleCAS Google Scholar
Brockschmidt A, Trost D, Peterziel H, Zimmermann K, Ehrler M, Grassmann H et al. KIAA1797/FOCAD encodes a novel focal adhesion protein with tumour suppressor function in gliomas. Brain 2012; 135: 1027–1041. Article Google Scholar
Soeda A, Inagaki A, Oka N, Ikegame Y, Aoki H, Yoshimura S et al. Epidermal growth factor plays a crucial role in mitogenic regulation of human brain tumor stem cells. J Biol Chem 2008; 283: 10958–10966. ArticleCAS Google Scholar
Ayuso-Sacido A, Moliterno JA, Kratovac S, Kapoor GS, O'Rourke DM, Holland EC et al. Activated EGFR signaling increases proliferation, survival, and migration and blocks neuronal differentiation in post-natal neural stem cells. J Neurooncol 2010; 97: 323–337. ArticleCAS Google Scholar
Beukelaers P, Vandenbosch R, Caron N, Nguyen L, Belachew S, Moonen G et al. Cdk6-dependent regulation of G(1) length controls adult neurogenesis. Stem Cells 2011; 29: 713–724. ArticleCAS Google Scholar
Zhou Z, Sun L, Wang Y, Wu Z, Geng J, Miu W et al. Bone morphogenetic protein 4 inhibits cell proliferation and induces apoptosis in glioma stem cells. Cancer Biother Radiopharm 2011; 26: 77–83. ArticleCAS Google Scholar
Silber J, Lim DA, Petritsch C, Persson AI, Maunakea AK, Yu M et al. miR-124 and miR-137 inhibit proliferation of glioblastoma multiforme cells and induce differentiation of brain tumor stem cells. BMC Med 2008; 6: 14. Article Google Scholar
Guessous F, Zhang Y, Kofman A, Catania A, Li Y, Schiff D et al. microRNA-34a is tumor suppressive in brain tumors and glioma stem cells. Cell Cycle 2010; 9: 1031–1036. ArticleCAS Google Scholar
Papagiannakopoulos T, Friedmann-Morvinski D, Neveu P, Dugas JC, Gill RM, Huillard E et al. Pro-neural miR-128 is a glioma tumor suppressor that targets mitogenic kinases. Oncogene 2012; 31: 1884–1895. ArticleCAS Google Scholar
Kefas B, Godlewski J, Comeau L, Li Y, Abounader R, Hawkinson M et al. microRNA-7 inhibits the epidermal growth factor receptor and the Akt pathway and is down-regulated in glioblastoma. Cancer Res 2008; 68: 3566–3572. ArticleCAS Google Scholar
Hai C, Jin YM, Jin WB, Han ZZ, Cui MN, Piao XZ et al. Application of mesenchymal stem cells as a vehicle to deliver replication-competent adenovirus for treating malignant glioma. Chin J Cancer 2012; 31: 233–240. ArticleCAS Google Scholar
Bexell D, Svensson A, Bengzon J . Stem cell-based therapy for malignant glioma. Cancer Treat Rev 2013; 39: 358–365. ArticleCAS Google Scholar
Yin J, Kim JK, Moon JH, Beck S, Piao D, Jin X et al. hMSC-mediated concurrent delivery of endostatin and carboxylesterase to mouse xenografts suppresses glioma initiation and recurrence. Mol Ther 2011; 19: 1161–1169. ArticleCAS Google Scholar
Hwang do W, Son S, Jang J, Youn H, Lee S, Lee D et al. A brain-targeted rabies virus glycoprotein-disulfide linked PEI nanocarrier for delivery of neurogenic microRNA. Biomaterials 2011; 32: 4968–4975. Article Google Scholar
Jiang H, Gomez-Manzano C, Aoki H, Alonso MM, Kondo S, McCormick F et al. Examination of the therapeutic potential of Delta-24-RGD in brain tumor stem cells: role of autophagic cell death. J Natl Cancer Inst 2007; 99: 1410–1414. ArticleCAS Google Scholar
He H, Nilsson CL, Emmett MR, Marshall AG, Kroes RA, Moskal JR et al. Glycomic and transcriptomic response of GSC11 glioblastoma stem cells to STAT3 phosphorylation inhibition and serum-induced differentiation. J Proteome Res 2010; 9: 2098–2108. ArticleCAS Google Scholar
Chao DT, Linette GP, Boise LH, White LS, Thompson CB, Korsmeyer SJ . Bcl-XL and Bcl-2 repress a common pathway of cell death. J Exp Med 1995; 182: 821–828. ArticleCAS Google Scholar
van den Heuvel S, Harlow E . Distinct roles for cyclin-dependent kinases in cell cycle control. Science 1993; 262: 2050–2054. ArticleCAS Google Scholar
Sempere LF, Christensen M, Silahtaroglu A, Bak M, Heath CV, Schwartz G et al. Altered MicroRNA expression confined to specific epithelial cell subpopulations in breast cancer. Cancer Res 2007; 67: 11612–11620. ArticleCAS Google Scholar