The effect of dietary protein and energy restriction on heat production and growth costs in the young rat | British Journal of Nutrition | Cambridge Core (original) (raw)

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. The effect of dietary protein and energy restriction on heat production and growth costs has been examined in rats fed on a marginal (MP) or high (HP) protein diet, containing 9.2 % or 22 % respectively of the gross energy content as casein. Diets were given either ad fib. or at approximately 25, 50 or 75 % of the ad lib. intake.

2. Heat production (kJ/kg body-weight (W)0.75 per d) was increased by 23% in rats fed on the MP diet ad Lib., as compared with their HP controls (P < 0.01).

3. Factorial analysis of the data showed that the overall cost of energy deposition (kJ/kJ; Ee) was elevated on the MP diet (MP 1.7, HP 1.28; P < 0.001). Maintenance requirements (kJ/kg W0.75 per d) for zero energy balance were unchanged (MP 562, HP 573).

The partial energy cost of protein deposition (Ep) varied with dietary manipulation. If the partial energy cost of fat deposition (Ef) was assumed constant at 1.25 kJ/kJ, and maintenance requirements were assumed to vary with metabolic body size (W0.75), Ep was elevated on the MP diet. On both diets, Ep was reduced at low energy intakes.

5. The significance of these results is discussed in the context of current approaches to the analysis and interpretation of findings describing dietary induced changes in the rate of heat production.

References

Agricultural Research Council/Medical Research Council (1975). Food and Nutrition Research, p. 30. London: H.M.S.O.Google Scholar

Agricultural Research Council (1981). The Nutritional Requirements of Pigs. Slough: Commonwealth Agricultural Bureaux.Google Scholar

Armitage, P. (1971). Statistical Methods in Medical Research. Oxford and Edinburgh: Blackwell Scientific Publications.Google Scholar

Bailey, N. T. C. (1981). Statistical Methods in Biology, 2nd ed. London: Hodder and Stoughton.Google Scholar

Close, W. H., Bershauer, F. & Heavens, R. P. (1983). British Journal of Nutrition 49, 255–269.CrossRefGoogle Scholar

Cox, M. D., Dalal, S. S., Heard, C. R. C. & Millward, D. J. (1984). Journal of Nutrition 114, 1609–1616.CrossRefGoogle Scholar

Coyer, P. A., Cox, M., Rivers, J. P. W. & Millward, D. J. (1984). Proceedings of the Nutrition Society 43, 75A.Google Scholar

Coyer, P. A., Rivers, J. P. W. & Millward, D. J. (1985 a). Proceedings of the Nutrition Society 44, 131A.Google Scholar

Coyer, P. A., Rivers, J. P. W. & Millward, D. J. (1985 b). British Journal of Nutrition 53, 491–499.CrossRefGoogle Scholar

Coyer, P. A., Donachie, P. D., Bates, P. C., Rivers, J. P. W. & Millward, D. J. (1986). Proceedings of the Nutrition Society 45, 108A.Google Scholar

Fattet, I., Hovel, F. D.DebØrskov, E. R., Kyle, D. J., Pennie, K. & Smart, R. I. (1984). British Journal of Nutrition 52, 561–574.CrossRefGoogle Scholar

Food and Agriculture Organization/World Health Organization/United Nations University (1985). Technical Report Series no. 724. Geneva: WHO.Google Scholar

Fowler, V. R., Fuller, M. F., Close, W. H. & Whittemore, C. T. (1979). In Energy Metabolism, European Association for Animal Production Publication no. 26, pp. 151–157 [Mount, L. E., editor]. London: Butterworths.Google Scholar

Gurr, M. I., Mawson, R., Rothwell, N. J. & Stock, M. J. (1980). Journal of Nutrition 110, 532–542.CrossRefGoogle Scholar

Harris, P. M., Hodgson, D. F. & Broadhurst, R. B. (1984). British Journal of Nutrition 52, 289–306.CrossRefGoogle Scholar

Holliday, M. A., Potter, D., Jarrah, A. & Beargh, S. (1967). Pediatric Research 1, 185–195.CrossRefGoogle Scholar

Holmes, C. W., Christensen, R.Carr, J. R. & Pearson, G. (1979). In Energy Metabolism, European Association for Animal Production Publication no. 26, pp. 97–100 [Mount, L. E., editor]. London: Butterworths.Google Scholar

Kielanowski, J. (1976). In Protein Metabolism and Nutrition, European Association for Animal Production Publication no. 16, pp. 207–214 [Cole, D. J. A., Borrman, K. N., Buttery, P. J., Lewis, D., Neale, R. J. and Swan, H., editors]. LondonButterworths.Google Scholar

Kielanowski, J. & Kotarbinska, M. (1970). In Energy Metabolism of Farm Animals, European Association for Animal Production Publication no. 13, pp. 145–148 [Schiürch, A. and Wenk, C., editors]. Zurich: Juris Druck and Verlag.Google Scholar

Kleiber, M. (1975). The Fire of Life, p. 268. New York: Kreiger.Google Scholar

Koong, L.-J., Neinaber, J. A., Pekas, J. C. & Yen, J.-T. (1982). Journal of Nutrition 112, 1638–1642.CrossRefGoogle Scholar

Lindsay, D. B. (1976). In Protein Metabolism and Nutrition, European Association for Animal Production Publication no. 16, pp. 183–195 [Cole, D. J. A., Boorman, K. N., Buttery, P. J., Lewis, D., Neale, R. J. and Swan, H., editors]. London: ButterworthsGoogle Scholar

Lunn, P. G. & Sawaya, A. L. (1985). British Journal of Nutrition 54, 322.Google Scholar

McCracken, K. J. & Gray, R. (1976). Proceedings of the Nutrition Society 35, 59A.Google Scholar

McCracken, K. J. & Weatherup, S. T. C. (1973). Proceedings of the Nutrition Society 32, 66A.Google Scholar

Mcgilvery, R. W. (1970). Biochemistry: a Functional Approach. Philadelphia: W. B. Saunders.Google Scholar

Millward, D. J., Garlick, P. J., Stewart, R. J. C., Nnanyelugo, D. O. & Waterlow, J. C. (1975). Biochemical Journal 150, 235–243.CrossRefGoogle Scholar

Millward, D. J., Garlick, P. J. & Reeds, P. J. (1976). Proceedings of the Nutrition Society 35, 339–349.CrossRefGoogle Scholar

Reeds, P. J., Fuller, M. J., Cadenhead, A., Lobley, G. E. & McDonald, J. D. (1980). British Journal of Nutrition 43, 445–455.CrossRefGoogle Scholar

Reeds, P. J. & Harris, C. I. (1980). In Nitrogen Metabolism in Man, pp. 391–408 [Waterlow, J. C. and Stephen, J. M. L., editors]. London: Applied Science Publishers.Google Scholar

Rothwell, N. J. & Stock, M. J. (1983). Brown Adipose Tissue, Recent Advances in Physiology, vol. 10, p. 372. Edinburgh: Churchill Livingstone.Google Scholar

Rothwell, N. J., Stock, M. J. & Tyzbir, R. S. (1982). Journal of Nutrition 112, 1663–1672.CrossRefGoogle Scholar

Schiemann, R. (1970). Mathematitisch-Naturrwissenschafliche Reine 19, 35–40.Google Scholar

Sundstol, F., Ekern, A. & Haugen, A. E. (1974). In Energy Metabolism of Farm Animals, European Association for Animal Production Publication no. 14, pp. 249–251 [Menke, K. H., Lantzsch, H. J. and Reichl, J. R., editors]. Hohenheim: University of Hohenheim.Google Scholar

Thorbek, G. (1975). Studies on Energy Metabolism in Growing Pigs 424. Copenhagen: Beretning fra Statens Husdryrbrugs forsog.Google Scholar

Toutain, P.-L., Toutain, C., Webster, A. J. F. & McDonald, J. D. (1977). British Journal of Nutrition 38, 445–454.CrossRefGoogle Scholar

Tulp, O., Krupp, P. P., Danforth, E. & Horton, E. S. (1979). Journal of Nutrition 109, 1321–1332.CrossRefGoogle Scholar

Walker, D. M. & Norton, B. W. (1971). Journal of Agricultural Science, Cambridge 77, 363–369.CrossRefGoogle Scholar

Webster, A. J. F. (1983). Mammalian Thermogenesis, p. 193. London: Chapman and Hall.Google Scholar