Quantification des teneurs en opale biogene des sediments de l'Ocean Austral par diffractometrie X | Clay Minerals | Cambridge Core (original) (raw)

Article contents

Résumé

Le dosage de l'opale biogène dans les sédiments marins peut être effectué par diffractométrie X par la mesure des surfaces des bandes de diffusion et par la mesure des surfaces des pics de cristobalite. La surface de la bande de diffusion, observée sur les diagrammes X de sédiments non chauffés, caractérise la concentration en composés amorphes (organiques et inorganiques). Elle permet de quantifier l'opale biogène de sédiments ne contenant que peu ou pas d'amorphes non biogènes. La surface du pic de cristobalite, obtenu par transformation de l'opale biogène par chauffage à 1050–1100°C pendant 12 h, permet de doser la silice biogène de divers sédiments. Ces deux approches méthodologiques ont été appliquées aux sédiments d'une carotte (MD 84–527) prélevée dans le secteur ouest-Indien de l'Océan Austral. Ce matériel, qui a enregistré la sédimentation des 40,000 dernières années, ne renferme qu'accessoirement des constituants amorphes volcaniques. Les concentrations en silice biogène sont obtenues avec une précision de ±10%. Le comptage des diatomées par observation au microscope a été également réalisé sur les mêmes sédiments. Les courbes des teneurs en opale biogène obtenues par les deux méthodes sont comparables et se corrèlent bien à l'abondance totale des diatomées.

Abstract

Abstract

The XRD peak of cristobalite (4·05 Å) and diffuse X-ray scattering bands can be used for quantitative analysis of biogenic opal in marine sediments. For non-heated samples, diffuse bands are due to X-ray scattering by the whole amorphous fraction (organic and inorganic). For samples which contain little or no inorganic amorphous components, these diffuse bands can be used for quantitative analysis of biogenic opal. Conversely, heating at 1050–1100°C for 12 h causes biogenic silica to transform into cristobalite, and by measuring the area of the cristobalite peak, the amount of biogenic silica can be measured whatever the nature of the sediment. The two approaches (natural versus heated samples) have been used to study sediments cored in the western Indian part of the Southern Ocean. These sediments encompass the last 40,000 years and do not contain amorphous volcanic components. The content of biogenic silica has been obtained with an accuracy of ±10%. The curves of opal abundance variation along the core obtained from the two X-ray methods and micropaleontologic counting are very similar.

Type

Research Article

Copyright

Copyright © The Mineralogical Society of Great Britain and Ireland 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bezrukov, P.L. (1955) Distribution and rate of deposition of silicate sediments in the sea of Okhotsk. Dokl. Akad. Nauk. SSR 103,473-476.Google Scholar

Bogdanov, Yu.A., Levitan, M A. Plyusnina, I.I. (1974) Quantitative analysis of quartz and opal in ocean sediment by infrared spectroscopy. Oceanology 14, 756–761.Google Scholar

Böstrom, K., Kraemek, T. & Garner, S. (1973) Provenance and accumulation rates of opaline silica^ Al, 11 Fe, Mn, Cu, Ni, and Go in Pacific pdagic sediments. Chan. GeoL 11,123-146.CrossRefGoogle Scholar

CalvektS, E. (1966) Aocumiilatkn (rfdiatiNiiaocous silica in Ibesediiiieotsctf the Gulf of Cafifionna. GeoL Soc. Am. Bull. 77, 569–596 Google Scholar

Chesiek R. & Eldeiheld H. (1968) The infaned detenninatkio of opal In sOioeous deep-sea sediments. Geochim Cosmochim. Acta 32, 1128–1140.Google Scholar

Crespo, A. (1975) Etudes par diffractomérie X de matériaux amorphes et partielkmet crislattises. Thèse 3è Cyde, Univ. de Pau.Google Scholar

DeMastek, D.J. (1981) The saygrfy and acaimnlation rfsiiica in the marine scdhnciils. Geochim. Casmodum. Acta 45, 1715–1732 Google Scholar

Dymond, J. (1981) Geochemistry of Nazca plate surface sedimqits: an evahiation of hydrothermal, biogenic, detrital and hydrogeoaus sources. GeoL Soc. Am. Mem. 154, 133–173.Google Scholar

EGGoman, D.W., Manheim, F.T. Beizek, P.R. (1980) Dissoluticon and analysis of amwphous silica in marine sediments. J. Sed. PeL 51, 215–225.Google Scholar

Egma, D. & Van dekGaast, S.J. (1971) Determination of opal in marine sediniraits by X-ray diffraction Neth. J. Sea RFes. 5, 382–389.Google Scholar

Ellis D.B. (1972) Htthfcene sediment of the South AitanticOceim: The calcite compensation depth and concentraction of calcite, opal, and quartz. MS thesis, Corvallis, Oregonon Stale Univrasity, USA.Google Scholar

Ellis, D.B.& Moore, T.C. (1973) Calcium cardonate, opal and quartz in Holocene pelagic sediments and the calcite compensation levd in tbe South Adanlic Ocean. J. Mar. Res. 31, 210–227.Google Scholar

Emelyanov, E.M. & Shmeiis, K.M. (1971) Suspended matter in the Medhenanean sea. 417–439 in: The Meditematean Sea–a Natund Sedimentatum LabonOory. (Stanley, D J., editor.)Google Scholar

Flökke, O.W. (1961) A discussion of the tzidyndte-ciistabalile praUran. Silic. Ind. 26, 415–418.Google Scholar

Goldberg, F.D. (1958) Detraminatioa opal in marine sediments. Mar. Res. 17, 178–182 Google Scholar

Havs, J.D. Shackleton, N.J. & Irving, G. (1976) Recoasbuctioa of die Atlantic and Weston faidian Ocean sectms of 18,000 BP Antaictk: Ocean. GeoL Soc. Am. Mem. 145, 537–372.Google Scholar

Heath|F.R. Holusiek, C.D. Anderson|D.R.& Leneem|M. (1983) Why consider subseabed disposali of high level nuclear wastes? Pp. 303–325 in: Radtoactive Intersdatce (Park, P.K., Kester, D.R., Duedall, I.W., Ketchum, B-H., editois).Google Scholar

Hurd, D.C. (1973) Interactions of biogenic silica, sediment, and sea water in the central equatorial Pacific. Geodiim. Cosmochim. Ada 37, 2257– 2282.Google Scholar

Hukd D.C., & Thevek, F. (1977) Changes in the physical and chemical properties of biogenic silica from the central equatorial Pacific:Part I: Refractive index, drasily and water ooateot of acid cleaned samples. Am. J. Sci 277, 1168–1202.Google Scholar

Koblenz-Miskhe|O. J., Volkovinsky|V.V. Kabanova, J.F. (1970) Plankton primary production of the worid ocean. Pp. 183-193 in: Scentific Explanation. of die South Pacific (Wooster, W.S. editor). Natioiial Academy of Sdenoes, Wastdngton DC. Google Scholar

Labracherie, M., Labeyrie, L.D., Duprat, J. Bard, E., Arnold, M., Pichon, J.J. & Duplessy, J.C. (1989) The last delegation in the Southern Ocean. Paleoceanography 4, 629–638 Google Scholar

Lapaquellekie, Y. (1987) Utilisation de la diffractometric X pour la determination des constituants amorphes dans les sediments marins (silice biogene et cendres volcaniques). Clay Miner. 22, 457–463 Google Scholar

Leinen, M. (1977) A nonnative calculation tedmique for d^ennining opal m deep-sea sediments. Geodmn. Casmodtim. Ada 41, 671–676.Google Scholar

Leinen, M. (1985) Techniques for determing opal in deep-sea sediments: a comparisons of radiolarian counts and X-ray diffiraction data. Marine Micropdeontology 375–383.Google Scholar

Leinen, M., Cwienk, D., Heath, G.R., Biscaye, P.E., Koixa, V., Thihm, J. & Dauthin, J.P. (1986) Distributioa of biogenic «Hra and quartz in leoent deep-sea sednnents. Geobgy 14, 199-203.Google Scholar

Listzin, A.P. (1971) Geochmical, mineralogical, and palcontologic studio (Leg, Deep Sea Diillnig Project). Initial Reports of the DCeep sea Drilling Project 6, 829–961.Google Scholar

Martin, J.H. Knauek, G.A. (1973) The elemental composition of plankton. Geochim. Casmochim. Acta 37, 1639–1653.Google Scholar

Molina-Cruz, A. (1976) Palo-Oceanography of the subtropical southeastern pacific during late Quaternary, a study of radiolaria, opal and quartz contents of deep-sea sediments. MS thesis, Corvallis, Oregon State University, USA.Google Scholar

Molina-Cruz, A. & Price, P. (1977) Distribution of opal and quartz in the ocean floor of the sub-troipical southeastern Pacific. Geology 5, 81–84.Google Scholar

Moore, T.C. Jr. (1973) Method of randomly distributing grains for microscopic examination. J. Sed. Pet. 43, 904–906.Google Scholar

Mortlock, R. & Frolich, P.N. (1989) A simple method for the rapid determimation of biogenic opal in pelagic marine sediments. Deep-sea Res. 36, 1415–1426.Google Scholar

Pichon J.J.(1985) Les diatomé traceurs de l'é climatique e hydrologique de l'Ocean Austral au couirs du dernier cycle climatique. Thèse de 3è Cycle, Bordeaux, France.Google Scholar

Pisias, N.G. (1975) Late quatranary sediment of the Panama Basin-sedimentation rates, praiodidties and controls of the carbonate and opal accumulation. Geol Soc. Am. Mem. 145, 375–392.Google Scholar

Pisias, N.G. & Leinen, M. (1984) Late Pleistocene variability of the northwest sector of the Pacific Ocean. Pp. 307–330 in : Milankovitch asnd Cliamte (A. Berger et al. editors). Riedel, New York.Google Scholar

Robertson, J.H. (1975) Glacial to interglacial oceanographic changes in the northwest Pacific, including a continuous record of the last 400,000 years. Thesis, Columbia Univ., New York, USA.Google Scholar

Roger, B. (1987) Repartition et localoisation des metaux traces dans les sediments. Application a l'estuaire de la Loire. Thèse Univ. Nantes, France. Google Scholar

Van Bennekom, A.J., Jansen, J.H.F., Van der Gaast, S.J., Van Iperen, J.M. & Pieters J. (1989) Aluminium-rich opal:intermediate in the preservation of biogenic silica in the Zaire (Congo) deep-sea fan. Deep-sea Res. 36, 173–190.Google Scholar