New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. X. Edtollite, K2NaCu5Fe3+O2(AsO4)4, and alumoedtollite, K2NaCu5AlO2(AsO4)4 | Mineralogical Magazine | Cambridge Core (original) (raw)

Abstract

Two new isostructural minerals edtollite K2NaCu5Fe3+O2(AsO4)4 and alumoedtollite K2NaCu5AlO2(AsO4)4 have been found in the Arsenatnaya fumarole, Second scoria cone of the Northern Breakthrough of the Great Tolbachik Fissure Eruption, Tolbachik volcano, Kamchatka, Russia. They are associated with sylvite, tenorite, dmisokolovite, shchurovskyite, johillerite, bradaczekite, and orthoclase. Edtollite forms prismatic crystals up to 0.02 mm × 0.1 mm; alumoedtollite forms long-prismatic crystals up to 0.01 mm × 0.1 mm. Both minerals have a semi-metallic lustre. Edtollite is brown–black to black and alumoedtollite is bronze coloured. Dcalc. = 4.26 (edtollite) and 4.28 (alumoedtollite) g cm–3. In reflected light, both minerals are grey, with distinct anisotropy. Reflectance values [edtollite/alumoedtollite: R1–R2, % (λ, nm)] are: 8.3–8.2/8.7–7.7 (470); 7.7–7.4/8.3–7.4 (546); 7.1–6.9/8.3–7.4 (589); and 6.3–6.3/7.6–7.2 (650). Chemical data are: (edtollite/alumoedtollite, wt.%, electron-microprobe): Na2O 3.13/2.58, K2O 8.12/9.09, Rb2O 0.00/0.11, CaO 0.00/0.52, CuO 36.55/38.35, ZnO 0.46/0.00, Al2O3 0.00/3.48, Fe2O3 7.34/1.79, TiO2 0.27/0.00, As2O5 43.57/43.66, total 99.44/99.58. The empirical formulae, based on 18 O apfu, for edtollite is: K1.83Na1.07Cu4.88Zn0.06Fe3+0.98Ti0.04As4.03O18; and for alumoedtollite is: K2.02Rb0.01Na0.87Ca0.10Cu5.06Al0.72Fe3+0.24As3.99O18. Both minerals are triclinic, P$\bar{1}$; unit-cell parameters (edtollite/alumoedtollite) are: a = 5.1168(6)/5.0904(11), b = 9.1241(12)/9.0778(14), c = 9.6979(14)/9.6658(2) Å, α = 110.117(13)/110.334(17), β = 102.454(12)/102.461(19), γ = 92.852(11)/92.788(15)°, V = 411.32(9)/404.88(14) Å3 and Z = 1/1. The strongest reflections in the powder X-ray diffraction pattern [d,Å(I)(hkl)] are for edtollite: 8.79(92)(001), 7.63(41)(0$\bar{1}$1), 5.22(44)(011), 3.427(100)(012), 3.148(64)(0$\bar{1}$3), 2.851(65)($\bar{1}$03) and 2.551(40)($\bar{2}$01); and for alumoedtollite: 8.78(81)(001), 7.62(67)(0$\bar{1}$1), 3.418(100)(012), 3.147(52)(0$\bar{1}$3), 2.558(58)($\bar{1}$22), 2.544(65)($\bar{2}$01) and 2.528(52)($\bar{1}\bar{3}$2). The crystal structures [single-crystal X-ray diffraction, R = 0.0773 (edtollite) and 0.0826 (alumoedtollite); 1504 and 1046 unique reflections, respectively] represent a novel structure type. It is based upon a heteropolyhedral pseudo-framework with the column formed by Cu2+-centred octahedra and square pyramids, octahedra MO6 (M = Fe3+, Al3+ or Cu2+) and AsO4 tetrahedra as the main building unit. K+ and Na+ are located in wide and narrow channels, respectively. Edtollite is named after the Russian geologist and Arctic explorer Eduard Vasilievich Toll (1858–1902), alumoedtollite is its analogue with Al prevailing among trivalent cations.

References

Agilent Technologies (2014) CrysAlisPro Software system, version 1.171.37.35. Agilent Technologies UK Ltd, Oxford, UK.Google Scholar

Bosi, F. (2014) Bond valence at mixed occupancy sites. I. Regular polyhedra. Acta Crystallographica, B70, 864–870.Google Scholar

Brese, N.E. and O`Keeffe, M. (1991) Bond-valence parameters for solids. Acta Crystallographica, B47, 192–197.Google Scholar

Britvin, S.N., Dolivo-Dobrovolsky, D.V. and Krzhizhanovskaya, M.G. (2017) Software for processing the X-ray powder diffraction data obtained from the curved image plate detector of Rigaku RAXIS Rapid II diffractometer. Zapiski Rossiiskogo Mineralogicheskogo Obshchestva, 146, 104–107 [in Russian].Google Scholar

Effenberger, H. (1985) Zur chemischen Zusammensetzung von Caratiit. Mitteilungen der Österreichischen Mineralogischen Gesellschaft, 130, 29–31.Google Scholar

Effenberger, H. and Zemann, J. (1984) The crystal structure of caratiite. Mineralogical Magazine, 48, 541–546.Google Scholar

Gorskaya, M.G., Filatov, S.K., Rozhdestvenskaya, I.V. and Vergasova, L.P. (1992) The crystal structure of klyuchevskite, K3Cu3(Fe,Al)O2(SO4)4, a new mineral from Kamchatka volcanic sublimates. Mineralogical Magazine, 56, 411–416.Google Scholar

Hatert, F. and Burke, E.A.J. (2008) The IMA–CNMNC dominant-constituent rule revisited and extended. The Canadian Mineralogist, 46, 717–728.Google Scholar

Kahlenberg, V., Piotrowski, A. and Giester, G. (2000) Crystal structure of Na4[Cu4O2(SO4)4]·MeCl (Me: Na, Cu, □) – the synthetic Na-analogue of piypite (caratiite). Mineralogical Magazine, 64, 1099–1108.Google Scholar

Krivovichev, S.V., Filatov, S.K. and Cherepansky, P.N. (2009) The crystal structure of alumoklyuchevskite, K3Cu3AlO2(SO4)4. Geology of Ore Deposits, 51, 656–662.Google Scholar

Krivovichev, S.V., Mentre, O., Siidra, O.I., Colmont, M. and Filatov, S.K. (2013) Anion-centered tetrahedra in inorganic compounds. Chemical Reviews, 113, 6459–6535.Google Scholar

Pekov, I.V., Zubkova, N.V., Yapaskurt, V.O., Belakovskiy, D.I., Lykova, I.S., Vigasina, M.F., Sidorov, E.G. and Pushcharovsky, D.Yu. (2014 a) New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. I. Yurmarinite, Na7(Fe3+,Mg,Cu)4(AsO4)6. Mineralogical Magazine, 78, 905–917.Google Scholar

Pekov, I.V., Zubkova, N.V., Yapaskurt, V.O., Belakovskiy, D.I., Vigasina, M.F., Sidorov, E.G. and Pushcharovsky, D.Yu. (2014 b) New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. II. Ericlaxmanite and kozyrevskite, two natural modifications of Cu4O(AsO4)2. Mineralogical Magazine, 78, 1527–1543.Google Scholar

Pekov, I.V., Zubkova, N.V., Yapaskurt, V.O., Belakovskiy, D.I., Chukanov, N.V., Lykova, I.S., Saveliev, D.P., Sidorov, E.G. and Pushcharovsky, D.Yu. (2014 c) Wulffite, K3NaCu4O2(SO4)4, and parawulffite, K5Na3Cu8O4(SO4)8, two new minerals from fumarole sublimates of the Tolbachik volcano, Kamchatka, Russia. The Canadian Mineralogist, 52, 699–716.Google Scholar

Pekov, I.V., Britvin, S.N., Yapaskurt, V.O., Polekhovsky, Y.S., Krivovichev, S.V., Vigasina, M.F. and Sidorov, E.G. (2015 a) Arsmirandite, IMA 2014-081. ; Mineralogical Magazine, 79, 51–58.Google Scholar

Pekov, I.V., Zubkova, N.V., Yapaskurt, V.O., Belakovskiy, D.I., Vigasina, M.F., Sidorov, E.G. and Pushcharovsky, D.Yu. (2015 b) New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. III. Popovite, Cu5O2(AsO4)2. Mineralogical Magazine, 79, 133–143.Google Scholar

Pekov, I.V., Zubkova, N.V., Belakovskiy, D.I., Yapaskurt, V.O., Vigasina, M.F., Sidorov, E.G. and Pushcharovsky, D.Yu. (2015 c) New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. IV. Shchurovskyite, K2CaCu6O2(AsO4)4, and dmisokolovite, K3Cu5AlO2(AsO4)4. Mineralogical Magazine, 79, 1737–1753.Google Scholar

Pekov, I.V., Yapaskurt, V.O., Britvin, S.N., Zubkova, N.V., Vigasina, M.F. and Sidorov, E.G. (2016 a) New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. V. Katiarsite, KTiO(AsO4). Mineralogical Magazine, 80, 639–646.Google Scholar

Pekov, I.V., Zubkova, N.V., Agakhanov, A.A., Chukanov, N.V., Belakovskiy, D.I., Sidorov, E.G., Britvin, S.N. and Pushcharovsky, D.Yu. (2016 b) Eleomelanite, IMA 2015–118. . Mineralogical Magazine, 80, 407–413.Google Scholar

Pekov, I.V., Zubkova, N.V., Agakhanov, A.A., Pautov, L.A., Vigasina, M.F., Sidorov, E.G., Ksenofontov, D.A., Britvin, S.N. and Pushcharovsky, D.Y. (2016 c) Edtollite, IMA 2016-010. ; Mineralogical Magazine, 80, 691–697.Google Scholar

Pekov, I.V., Zubkova, N.V., Yapaskurt, V.O., Polekhovsky, Yu.S., Vigasina, M.F., Belakovskiy, D.I., Britvin, S.N., Sidorov, E.G. and Pushcharovsky, D.Yu. (2016 d) New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. VI. Melanarsite, K3Cu7Fe3+O4(AsO4)4. Mineralogical Magazine, 80, 855–867.Google Scholar

Pekov, I.V., Yapaskurt, V.O., Belakovskiy, D.I., Vigasina, M.F., Zubkova, N.V. and Sidorov, E.G. (2017 a) New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. VII. Pharmazincite, KZnAsO4. Mineralogical Magazine, 81, 1001–1008.Google Scholar

Pekov, I.V., Zubkova, N.V., Agakhanov, A.A., Sidorov, E.G., Ksenofontov, D.A., Britvin, S.N. and Pushcharovsky, D.Y. (2017 b) Alumoedtollite, IMA2017-020. ; Mineralogical Magazine, 81, 1033–1038.Google Scholar

Pekov, I.V., Zubkova, N.V., Agakhanov, A.A., Yapaskurt, V.O., Chukanov, N.V., Belakovskiy, D.I., Sidorov, E.G. and Pushcharovsky, D.Yu. (2018 a) New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. VIII. Arsenowagnerite, Mg2(AsO4)F. Mineralogical Magazine, 82, 877–888.Google Scholar

Pekov, I.V., Koshlyakova, N.N., Zubkova, N.V., Lykova, I.S., Britvin, S.N., Yapaskurt, V.O., Agakhanov, A.A., Shchipalkina, N.V., Turchkova, A.G. and Sidorov, E.G. (2018 b) Fumarolic arsenates – a special type of arsenic mineralization. European Journal of Mineralogy, 30, 305–322.Google Scholar

Pekov, I.V., Zubkova, N.V., Agakhanov, A.A., Belakovskiy, D.I., Vigasina, M.F., Yapaskurt, V.O., Sidorov, E.G., Britvin, S.N. and Pushcharovsky, D.Yu. (2018 c) New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. IX. Arsenatrotitanite, NaTiO(AsO4). Mineralogical Magazine, 82, DOI: https://doi.org/10.1180/mgm.2018.134Google Scholar

Sheldrick, G.M. (2008) A short history of SHELX. Acta Crystallographica, A64, 112–122.Google Scholar

Siidra, O.I., Nazarchuk, E.V., Zaitsev, A.N., Lukina, E.A., Avdontseva, E.Y., Vergasova, L.P., Vlasenko, N.S., Filatov, S.K., Turner, R. and Karpov, G.A. (2017) Copper oxosulphates from fumaroles of Tolbachik volcano: puninite, Na2Cu3O(SO4)3 – a new mineral species and structure refinements of kamchatkite and alumoklyuchevskite. European Journal of Mineralogy, 29, 499–510.Google Scholar

Starova, G.L., Krivovichev, S.V. and Filatov, S.K. (1998) Crystal chemistry of inorganic compounds based on chains of oxocentered tetrahedra. II. The crystal structure of Cu4O2[(As,V)O4]Cl. Zeitschrift für Kristallographie, 213, 650–653.Google Scholar