New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. XI. Anatolyite, Na6(Ca,Na)(Mg,Fe3+)3Al(AsO4)6 | Mineralogical Magazine | Cambridge Core (original) (raw)

Abstract

The new mineral anatolyite Na6(Ca,Na)(Mg,Fe3+)3Al(AsO4)6 was found in the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. It is associated with potassic feldspar, hematite, tenorite, cassiterite, johillerite, tilasite, ericlaxmanite, lammerite, arsmirandite, sylvite, halite, aphthitalite, langbeinite, anhydrite, wulffite, krasheninnikovite, fluoborite, pseudobrookite and fluorophlogopite. Anatolyite occurs as aggregates (up to 2 mm across) of rhombohedral–prismatic, equant or slightly elongated along [001] crystals up to 0.2 mm. The mineral is transparent, pale brownish–pinkish, with vitreous lustre. It is brittle, cleavage was not observed and the fracture is uneven. The Mohs’ hardness is ca 4½. Dcalc is 3.872 g cm–3. Anatolyite is optically uniaxial (–), ω = 1.703(4) and ε = 1.675(3). Chemical composition (wt.%, electron microprobe) is: Na2O 16.55, K2O 0.43, CaO 2.49, MgO 5.80, MnO 0.16, CuO 0.69, ZnO 0.55, Al2O3 5.01, Fe2O3 7.94, TiO2 0.18, SnO2 0.17, SiO2 0.04, P2O5 0.55, As2O5 60.75, SO3 0.03, total 101.34. The empirical formula based on 24 O apfu is (Na5.90K0.10)Σ6.00(Ca0.50Na0.13Zn0.08Mn0.03)Σ0.74(Mg1.63Fe3+1.12Al0.15Cu0.10)Σ3.00(Al0.96Ti0.03Sn0.01)Σ1.00(As5.97P0.09Si0.01)Σ6.07O24. Anatolyite is trigonal, R$\bar{3}$c, a = 13.6574(10), c = 18.2349(17) Å, V = 2945.6(4) Å3 and Z = 6. The strongest reflections of the powder XRD pattern [d,Å(I)(hkl)] are: 7.21(33)(012), 4.539(16)(113), 4.347(27)(211), 3.421(20)(220), 3.196(31)(214), 2.981(17)(223), 2.827(100)(125) and 2.589(18)(410). The crystal structure was solved from single-crystal XRD data to R = 4.77%. The structure is based on a 3D heteropolyhedral framework formed by M4O18 clusters [M1 = Al and M2 = (Mg,Fe3+)] linked with AsO4 tetrahedra. (Ca,Na) and Na cations centre A1O6 and A2O8 polyhedra in voids of the framework. Anatolyite is isostructural with yurmarinite. The new mineral is named in honour of the outstanding Russian crystallographer, mineralogist and mathematician Anatoly Kapitonovich Boldyrev (1883–1946).

References

Belam, W., Madani, A., Driss, A. and Daoud, A. (2000) Elaboration et étude radiocristallographique du trisodium yttrium-aluminium triarsenic dodecaoxyde Na3Y0.11Al1.89(AsO4)3. Effet du dopage par Na2O sur la conductivite electrique. Journal de la Societe Chimique, Tunis, 4, 735–743.Google Scholar

Belokoneva, E.L., Ruchkina, E.A., Dimitrova, O.V. and Stefanovich, S.Y. (2002) Synthesis and crystal structure of a new trigonal modification of Na3Fe2(PO4)3. Zhurnal Neorganicheskoi Khimii, 47, 1423–1426 [in Russian].Google Scholar

Brese, N.E. and O'Keeffe, N.E. (1991) Bond-valence parameters for solids. Acta Crystallographica, B47, 192–197.Google Scholar

Britvin, S.N., Dolivo-Dobrovolsky, D.V. and Krzhizhanovskaya, M.G. (2017) Software for processing the X-ray powder diffraction data obtained from the curved image plate detector of Rigaku RAXIS Rapid II diffractometer. Zapiski Rossiiskogo Mineralogicheskogo Obshchestva, 146, 104–107 [in Russian].Google Scholar

d'Yvoire, F., Bretey, E. and Collin, G. (1988) Crystal structure, non-stoichiometry and conductivity of II-Na3M2(AsO4)3 (M = Al, Ga, Cr, Fe). Solid State Ionics, 28, 1259–1264.Google Scholar

Fedotov, S.A. and Markhinin, Y.K. (editors) (1983) The Great Tolbachik Fissure Eruption. Cambridge University Press, New York, 341 pp.Google Scholar

Lii, K.-H. (1996) Na7Fe4(PO4)6: a mixed-valence iron phosphate containing a tetramer of edge-sharing FeO6 octahedra. Journal of the Chemical Society, Dalton Transactions, 6, 819–822.Google Scholar

Masquelier, C., d'Yvoire, F. and Collin, G. (1995) Crystal structure of Na7Fe4(AsO4)6 and α-Na3Al2(AsO4)3, two sodium ion conductors structurally related to II-Na3Fe2(AsO4)3. Journal of Solid State Chemistry, 118, 33–42.Google Scholar

Pekov, I.V., Zubkova, N.V., Yapaskurt, V.O., Belakovskiy, D.I., Lykova, I.S., Vigasina, M.F., Sidorov, E.G. and Pushcharovsky, D.Yu. (2014 a) New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. I. Yurmarinite, Na7(Fe3+,Mg,Cu)4(AsO4)6. Mineralogical Magazine, 78, 905–917.Google Scholar

Pekov, I.V., Zubkova, N.V., Yapaskurt, V.O., Belakovskiy, D.I., Vigasina, M.F., Sidorov, E.G. and Pushcharovsky, D.Yu. (2014 b) New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. II. Ericlaxmanite and kozyrevskite, two natural modifications of Cu4O(AsO4)2. Mineralogical Magazine, 78, 1527–1543.Google Scholar

Pekov, I.V., Britvin, S.N., Yapaskurt, V.O., Polekhovsky, Y.S., Krivovichev, S.V., Vigasina, M.F. and Sidorov, E.G. (2015 a) Arsmirandite, IMA 2014-081. ; Mineralogical Magazine, 79, 51–58.Google Scholar

Pekov, I.V., Zubkova, N.V., Yapaskurt, V.O., Belakovskiy, D.I., Vigasina, M.F., Sidorov, E.G. and Pushcharovsky, D.Yu. (2015 b) New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. III. Popovite, Cu5O2(AsO4)2. Mineralogical Magazine, 79, 133–143.Google Scholar

Pekov, I.V., Zubkova, N.V., Belakovskiy, D.I., Yapaskurt, V.O., Vigasina, M.F., Sidorov, E.G. and Pushcharovsky, D.Yu. (2015 c) New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. IV. Shchurovskyite, K2CaCu6O2(AsO4)4, and dmisokolovite, K3Cu5AlO2(AsO4)4. Mineralogical Magazine, 79, 1737–1753.Google Scholar

Pekov, I.V., Lykova, I.S., Yapaskurt, V.O., Belakovskiy, D.I., Turchkova, A.G., Britvin, S.N., Sidorov, E.G. and Scheidl, K.S. (2016 a) Anatolyite, IMA 2016-040. ; Mineralogical Magazine, 80, 1135–1144.Google Scholar

Pekov, I.V., Yapaskurt, V.O., Britvin, S.N., Zubkova, N.V., Vigasina, M.F. and Sidorov, E.G. (2016 b) New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. V. Katiarsite, KTiO(AsO4). Mineralogical Magazine, 80, 639–646.Google Scholar

Pekov, I.V., Zubkova, N.V., Yapaskurt, V.O., Polekhovsky, Yu.S., Vigasina, M.F., Belakovskiy, D.I., Britvin, S.N., Sidorov, E.G. and Pushcharovsky, D.Yu. (2016 c) New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. VI. Melanarsite, K3Cu7Fe3+O4(AsO4)4. Mineralogical Magazine, 80, 855–867.Google Scholar

Pekov, I.V., Yapaskurt, V.O., Belakovskiy, D.I., Vigasina, M.F., Zubkova, N.V. and Sidorov, E.G. (2017) New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. VII. Pharmazincite, KZnAsO4. Mineralogical Magazine, 81, 1001–1008.Google Scholar

Pekov, I.V., Koshlyakova, N.N., Zubkova, N.V., Lykova, I.S., Britvin, S.N., Yapaskurt, V.O., Agakhanov, A.A., Shchipalkina, N.V., Turchkova, A.G. and Sidorov, E.G. (2018 a) Fumarolic arsenates – a special type of arsenic mineralization. European Journal of Mineralogy, 30, 305–322.Google Scholar

Pekov, I.V., Zubkova, N.V., Agakhanov, A.A., Yapaskurt, V.O., Chukanov, N.V., Belakovskiy, D.I., Sidorov, E.G. and Pushcharovsky, D.Yu. (2018 b) New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. VIII. Arsenowagnerite, Mg2(AsO4)F. Mineralogical Magazine, 82, 877–888.Google Scholar

Pekov, I.V., Zubkova, N.V., Agakhanov, A.A., Belakovskiy, D.I., Vigasina, M.F., Yapaskurt, V.O., Sidorov, E.G., Britvin, S.N. and Pushcharovsky, D.Y. (2019 a) New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. IX. Arsenatrotitanite, NaTiO(AsO4). Mineralogical Magazine, 83, 453–458.Google Scholar

Pekov, I.V., Zubkova, N.V., Agakhanov, A.A., Ksenofontov, D.A., Pautov, L.A., Sidorov, E.G., Britvin, S.N., Vigasina, M.F. and Pushcharovsky, D.Yu. (2019 b) New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka Russia. X. Edtollite, K2NaCu5Fe3+O2(AsO4)4, and alumoedtollite, K2NaCu5AlO2(AsO4)4. Mineralogical Magazine, 83, 485–495.Google Scholar

Sheldrick, G.M. (2008) A short history of SHELX. Acta Crystallographica, A64, 112–122.Google Scholar

Symonds, R.B. and Reed, M.H. (1993) Calculation of multicomponent chemical equilibria in gas-solid-liquid systems: calculation methods, thermochemical data, and applications to studies of high-temperature volcanic gases with examples from Mount St. Helens. American Journal of Science, 293, 758–864.Google Scholar