Adrenergic Receptors in Depression | The British Journal of Psychiatry | Cambridge Core (original) (raw)

Summary

Platelet α2-and lymphocyte ß2-adrenoceptor densities, plasma noradrenaline and serum Cortisol were measured before, during and one week after a course of EEG-monitored electroconvulsive therapy, in nine depressed patients. A 50% fall in Hamilton Depression Rating scores occurred after a fairly consistent total seizure time, regardless of the amount of ECT given. Platelet α2-adrenoceptor densities showed a statistically significant fall after three ECTs, but were unchanged after the full course of ECT and were independent of clinical change. Lymphocyte ß2-adrenoceptor densities were unaltered. Plasma noradrenaline concentrations were initially high, and fell with ECT in a manner paralleling clinical recovery. Plasma noradrenaline may be a more useful index of central changes during antidepressant treatment than peripheral blood cell receptor densities.

References

Akagi, H., Green, A. R. & Heal, D. J. (1981) Repeated electroconvulsive shock attenuates clonidine-induced hypoactivity in both mice and rats. British Journal of Clinical Pharmacology, 11, 230P–231P Google Scholar

American Psychiatric Association (1980) DSM III: Diagnostic and Statistical Manual of Mental Disorders. 3rd ed. Washington DC: APA.Google Scholar

Barnes, R. F., Raskind, M., Gumbrecht, G. & Halter, J. B. (1982) The effects of age on the plasma catecholamine response to mental stress in man. Journal of Clinical Endocrinology and Metabolism, 54, 64–69.CrossRefGoogle ScholarPubMed

Beckmann, H. & Goodwin, F. K. (1975) Antidepressant response to tricyclics and urinary MHPG in unipolar patients. Archives of General Psychiatry, 32, 17–21.CrossRefGoogle ScholarPubMed

Bergstrom, D. A. & Kellar, K. J. (1979) Effect of electroconvulsive shock on monoaminergic receptor binding sites in rat brain. Nature, 278, 464–466.CrossRefGoogle ScholarPubMed

Boobis, A. R., Murray, S., Jones, D. H., Reid, J. L. & Davies, D. S. (1980) Urinary conjugates of 4-hydroxy-3-methoxyphenylethyleneglycol do not provide an index of brain amine turnover in man. Clinical Science, 58, 311–316.CrossRefGoogle Scholar

Boyum, A. (1967) Isolation of mononuclear cells and granulocytes from human blood. Scandanavian Journal of Clinical and Laboratory Investigation, 97, (suppl), 77–89.Google Scholar

Carney, M. W. P., Roth, M. & Garside, R. F. (1965) The diagnosis of depressive syndromes and the prediction of ECT response. British Journal of Psychiatry, 111, 659–674.Google Scholar

Charney, D. S., Heninger, G. R., Sternberg, D. E., Hafstad, K. M., Giddings, S. & Landis, H. (1982) Adrenergic receptor sensitivity in depression. Archives of General Psychiatry, 39, 290–294.Google Scholar

Charney, D. S., Heninger, G. R., Sternberg, D. E., Redmond, D. E., Leckman, J. F. Maas, J. W. & Roth, R. H. (1981) Presynaptic adrenergic receptor sensitivity in depression. Archives of General Psychiatry, 38, 1334–1340.CrossRefGoogle ScholarPubMed

Charney, D. S., Heninger, G. R., Sternberg, D. E., (1983) Alpha-2 adrenergic receptor sensitivity and the mechanism of action of antidepressant therapy. British Journal of Psychiatry, 142, 265–275.Google Scholar

Checkley, S. A., Slade, A. P., Shur, E. & Dawling, S. (1981a) A pilot study for the mechanism of action of desipramine. British Journal of Psychiatry, 138, 248–251.CrossRefGoogle ScholarPubMed

Charney, D. S., Heninger, G. R., Sternberg, D. E., (1981b) Growth hormone and other responses to Clonidine in patients with endogenous depression. British Journal of Psychiatry, 138, 51–55.Google Scholar

Coppen, A., Rao, R., Ruthven, C. R. J., Goodwin, B. L. & Sandler, M. (1979) Urinary 4-hydroxy-3-methoxyphenylglycol is not a predictor for clinical response to amitriptyline in depressive illness. Psychopharmacology, 64, 95–97.Google Scholar

Daiguji, M., Meltzer, H. Y., Tong, C., U'Prichard, D. C., Young, M. & Kravitz, H. (1981) α2-adrenergic receptors in platelet membranes of depressed patients: no change in number or 3H-yohimbine affinity. Life Sciences, 29, 2059–2064.CrossRefGoogle ScholarPubMed

Davies, I. B., Sudera, D. & Sever, P. S. (1981) Endogenous agonist regulation of α-adrenoceptors in man. Clinical Science, 61, 207s–210s.Google Scholar

Deakin, J. F. W., Owen, F., Cross, A. J. & Dashwood, M. J. (1981) Studies on possible mechanisms of action of electroconvulsive therapy: effects of repeated electrically induced seizures on rat brain receptors for monoamines and other neurotransmitters. Psychopharmacology, 73, 345–349.Google Scholar

Elithorn, A., Bridges, P. K., Hodges, J. R. & Jones, M. T. (1969) Adrenocortical responsiveness during courses of electroconvulsive therapy. British Journal of Psychiatry, 115, 575–580.Google Scholar

Esler, M., Jackman, G., Leonard, P., Skews, H., Bobik, A. & Korner, P. (1981a) Effect of norepinephrine uptake blockers on norepinephrine kinetics. Clinical Pharmacology and Therapeutics, 29, 12–20.Google Scholar

Esler, M. Skews, H., Leonard, P., Jackman, G., Bobik, A. & Korner, P. (1981b) Age-dependence of noradrenaline kinetics in normal subjects. Clinical Science, 60, 217–219.CrossRefGoogle ScholarPubMed

Esler, M. Turbott, J., Schwarz, R., Leonard, P., Bobik, A., Skews, H. & Jackman, G. (1982) The peripheral kinetics of norepinephrine in depressive illness. Archives of General Psychiatry, 39, 295–300.CrossRefGoogle ScholarPubMed

Extein, I., Tallman, J., Smith, C. C. & Goodwin, F. K. (1979) Changes in lymphocyte beta-adrenergic receptors in depression and mania. Psychiatry Research, 1, 191–197.Google Scholar

Fraser, J., Nadeau, J., Robertson, D. & Wood, A. J. J. (1981) Regulation of human leukocyte beta receptors by endogenous catecholamines. Journal of Clinical Investigation, 67, 1777–1784.Google Scholar

Garcia-Sevilla, J. A., Zis, A. P., Hollingsworth, P. J., Greden, J. F. & Smith, C. B. (1981) Platelet α2-adrenergic receptors in major depressive disorder. Archives of General Psychiatry, 38, 1327–1333.Google Scholar

Hamilton, M. (1967) Development of a rating scale for primary depressive illness British Journal of Social and Clinical Psychology, 6, 278–296.Google Scholar

Harnryd, C., Bjerkenstedt, L., Grimm, V. E. & Sedvall, G. (1979) Reduction of MOPEG levels in cerebrospinal fluid of psychotic women after electroconvulsive treatment. Psychopharmacology, 64, 131–134.Google Scholar

Krstulovic, A. M., Dziedzic, S. W. Bertani-Dziedzic, L. & Di Rico, D. E. (1981) Plasma catecholamines in hypertension and phaeochromocytoma determined using ion-pair reversed-phase chromatography with amperometric detection. Journal of Chromatography, 217, 523–537.Google Scholar

Leonard, B. E. (1980) Pharmacological properties of some “second generation” antidepressant drugs. Neuropharmacology, 19, 1175–1183.Google Scholar

Linnoila, M., Karoum, F., Rosenthal, N. & Potter, W. Z. (1983) Electroconvulsive treatment and lithium carbonate. Archives of General Psychiatry, 40, 677–680.CrossRefGoogle ScholarPubMed

Louis, W. J. Doyle, A. E. & Anavekar, S. N. (1975) Plasma noradrenaline concentration and blood pressure in essential hypertension, phaeochromocytoma and depression. Clinical Science and Molecular Medicine, 48, 239s–242s.Google Scholar

Maas, J. W., Dekirmenjian, H. & Fawcett, J. A. (1971) Catecholamine metabolism, depression and stress. Nature, 230, 330–331.Google Scholar

Maas, J. W. Fawcett, J. A. & Dekirmenjian, H. (1972) Catecholamine metabolism, depressive illness and drug response. Archives of General Psychiatry, 26, 252–262.CrossRefGoogle ScholarPubMed

Maletzky, B. M. (1978) Seizure duration and clinical effect in electroconvulsive therapy. Comprehensive Psychiatry, 19, 541–550.Google Scholar

Medical Research Council Brain Metabousm Unit (1972) Modified amine hypothesis for the aetiology of affective illness. Lancet, ii, 573–577.Google Scholar

Pandey, G. N., Dysken, M. W., Garver, D. L. & Davis, J. M. (1979) Beta-adrenergic receptor function in affective illness. American Journal of Psychiatry, 136, 675–678.Google Scholar

Pimoule, C., Briley, M. S., Gay, C., Loo, H., Sechter, D., Zarifian, E., Raisman, R. & Langer, S. Z. (1983) 3H-rauwolscine binding in platelets from depressed patients and healthy volunteers. Psychopharmacology, 79, 308–312.Google Scholar

Post, R. M., Gordon, E. K., Goodwin, F. K. & Bunney, W. E. (1973) Central norepinephrine metabolism in affective illness; MHPG in the cerebrospinal fluid. Science, 179, 1002–1003.Google Scholar

Sacchetti, E., Smeraldi, E., Cagnasso, M., Biondi, P. A., & Bellodi, L. (1976) MHPG. amitriptyline and affective disorders: a longitudinal study. International Pharmacopsychiatry, 11, 157–162.CrossRefGoogle ScholarPubMed

Sachar, E. J., Halbreich, U., Asnis, G. M., Nathan, R. S., Halpern, F. S. & Ostrow, L. (1981) Paradoxical Cortisol responses to dextroamphetamine in endogenous depression. Archives of General Psychiatry, 38, 1113–1117.Google Scholar

Schildkraut, J. J. (1965) The catecholamine hypothesis of affective disorders: a review of supporting evidence. American Journal of Psychiatry, 112, 509–522.Google Scholar

Schildkraut, J. J. (1973a) Catecholamine metabolism and affective disorders: studies of MHPG excretion. Frontiers in Catecholamine Research, 1165–1171.Google Scholar

Schildkraut, J. J. (1973b) Norepinephrine metabolites as biochemical criteria for classifying depressive disorders and predicting responses to treatment: preliminary findings. American Journal of Psychiatry, 130, 695–698.CrossRefGoogle ScholarPubMed

Segal, D. S., Kuczenski, R. & Mandell, A. R. (1974) Theoretical implications of drug induced adaptive regulation for a biogenic amine hypothesis of affective disorder. Biological Psychiatry, 9, 147–159.Google Scholar

Shaw, D. M., O'Keeffe, R., Macsweeney, D. A., Brooksbank, B. W. L., Noguera, R. & Coppen, A. (1973) 3-methoxy-4-hydroxyphenylglycol in depression. Psychological Medicine, 3, 333–336.Google Scholar

Siever, L. J., Pickar, D., Lake, C. R., Cohen, R. M., Uhde, T. W. & Murphy, D. L. (1983) Extreme elevations in plasma norepinephrine associated with decreased α-adrenergic responsitivity in major depressive disorder: two case reports. Journal of Clinical Psychopharmacology, 3, 39–41.Google Scholar

Slade, A. P. & Checkley, S. A. (1980) A neuroendocrine study of the mechanism of action of ECT. British Journal of Psychiatry, 137, 217–221.Google Scholar

Sulser, F., Vetulani, J. & Mobley, P. L. (1978) Mode of action of antidepressant drugs. Biochemical Pharmacology, 27, 257–261.Google Scholar

Tepper, J. M., Nakamura, S., Spanis, C. W., Squire, L. R., Younger, S. J. & Groves, P. M. (1982) Subsensitivity of catecholaminergic neurons to direct acting agonists after single or repeated electroconvulsive shock. Biological Psychiatry, 17, 1059–1070.Google Scholar

Thompson, C., Checkley, S. A., Corn, T., Franey, C. & Arendt, J. (1983) Down-regulation at pineal β-adrenoceptors in depressed patients treated with desipramine? Lancet, i, 1101.Google Scholar

Vetth, R. C., Bielski, R. J., Bloom, V., Fawcett, J. A. Narasimhachari, N. & Friedel, R. O. (1983) Urinary MHPG excretion and treatment with desipramine or amitriptyline: prediction of response, effect of treatment and methodologic hazards. Journal of Clinical Psychopharmacology, 3, 18–27.Google Scholar

Wilk, S., Shopsin, B., Gershon, S. & Suhl, M. (1972) Cerebrospinal fluid levels of MHPG in affective disorders. Nature, 235, 440–441.CrossRefGoogle ScholarPubMed

Wood, K. & Coppen, A. (1982) α2-adrenergic receptors in depression. Lancet, i, 1121–1122.Google Scholar

Wood, K. & Coppen, A. (1983) Prophylactic lithium treatment of patients with affective disorders is associated with decreased platelet 3H-dihydroergocryptine binding. Journal of Affective Disorders, 5, 253–258.Google Scholar

Wyatt, R. J., Portnoy, B., Kupfer, D. J., Snyder, F. & Engelman, K. (1971) Resting plasma catecholamine concentrations in patients with depression and anxiety. Archives of General Psychiatry, 24, 65–70.Google Scholar

Ziegler, M. G., Lake, C. R. & Kopin, I. J. (1976) Plasma noradrenaline increases with age. Nature, 261, 333–335.Google Scholar

Ziegler, M. G., Lake, C. R. Wood, J. H., Brooks, B. R. & Ebert, M. H. (1977) Relationship between norepinephrine in blood and cerebrospinal fluid in the presence of a blood-cerebro-spinal fluid barrier for norepinephrine. Journal of Neurochemistry, 28, 677–679.Google Scholar