Replica Exchange Molecular Dynamics Method for Protein Folding Simulation (original) (raw)

References

  1. Brooks, C. L., Onuchic, J. N., and Wales, D. J. (2001) Taking a walk on a landscape. Science 293, 612–613.
    Article CAS PubMed Google Scholar
  2. Dobson, C. M., Sali, A., and Karplus, M. (1998) Protein folding: a perspective from theory and experiment. Angrew Chem. Int. Edit. Engl. 37, 868–893.
    Article Google Scholar
  3. Brooks, C. L., Gruebele, M., Onuchic, J. N., and Wolynes, P. G. (1998) Chemical physics of protein folding. Proc. Natl. Acad. Sci. USA 95, 11,037–11,038.
    Article CAS PubMed Google Scholar
  4. Zhou, Y. and Karplus, M. (1999) Interpreting the folding kinetics of helical proteins. Nature 401, 400–403.
    CAS PubMed Google Scholar
  5. Zhou, R., Huang, X., Margulius, C. J., and Berne, B. J. (2004) Hydrophobic collapse in multidomain protein folding. Science 305, 1605–1609.
    Article CAS PubMed Google Scholar
  6. Daggett, V. and Levitt, M. (1993) Realistic simulations of native-protein dynamics in solution and beyond. Annu. Rev. Biophys. Biomol. Struct. 22, 353–380.
    Article CAS PubMed Google Scholar
  7. Duan, Y. and Kollman, P. A. (1998) Pathways to a protein folding intermediate observed in a 1-microsecond simulation in aqueous solution. Science 282, 740–744.
    Article CAS PubMed Google Scholar
  8. Frantz, D. D., Freeman, D. L., and Doll, J. D. (1990) Reducing quasi-ergodic behavior in Monte Carlo simulations by _J_-Walking. Applications to atomic clusters. J. Chem. Phys. 93, 2769–2784.
    Article CAS Google Scholar
  9. Freeman, D. L., Frantz, D. D., and Doll, J. D. (1992) Extending j walking to quantum systems: applications to atomic clusters. J. Chem. Phys. 97, 5713.
    Article Google Scholar
  10. Zhou, R. and Berne, B. J. (1997) Smart walking: a new method for boltzmann sampling of protein confromations. J. Chem. Phys. 107, 9185–9196.
    Article CAS Google Scholar
  11. Andricioaei, I. and Straub, J. E. (1997) On Monte Carlo and molecular dynamics methods inspired by Tsallis statistics: methodology, optimization, and application to atomic clusters. J. Chem. Phys. 107, 9117–9124.
    Article CAS Google Scholar
  12. Berg, B. A. and Neuhaus, T. (1991) Multicanonical algorithms for first order phase transitions. Phys. Lett. B. 267, 249–253.
    Article Google Scholar
  13. Hukushima, K. and Nemoto, K. (1996) Exchange monte carlo method and application to spin glass simulations. J. Phys. Soc. Japan 65, 1604–1608.
    Article CAS Google Scholar
  14. Marinari, E., Parisi, G., and Ruiz-Lorenzo, J. J. (1998) Numerical simulations of spin glass systems. In: Spin Glass and Random Fields, (Young, A. P., ed.), World Scientific, Singapore, pp. 59.
    Google Scholar
  15. Lyubarsev, A. P., Martsinovski, A. A., Shevkunov, S. V., and Vorontsov-Velyaminov, P. N. (1992) New approach to monte-carlo calculation of the free-energy-method of expanded ensembles. J. Chem. Phys. 96, 1776–1793.
    Article Google Scholar
  16. Marinari, E. and Parisi, G. (1992) Simulated tempering: a new Monte Carlo scheme. Europhys. Lett. 19, 451–458.
    Article CAS Google Scholar
  17. Stolovitzky, G. and Berne, B. J. (2000) Catalytic tempering: a method for sampling rough energy landscapes by monte carlo Proc. Natl. Acad. Sci. USA 97, 11,164–11,169.
    Article CAS PubMed Google Scholar
  18. Piela, L., Kostrowicki, J., and Scheraga, H. A. (1989) The multipleninima problem in the conformational analysis of molecules. Deformation of the protein energy hypersurface by the diffusion equation method. J. Phys. Chem. 93, 3339–3346.
    Article CAS Google Scholar
  19. Kostrowicki J. A. and Scheraga, H. A. (1992) Application of the diffusion equiation method for global optimization to oligopeptides. J. Phys. Chem. 96, 7442–7449.
    Article CAS Google Scholar
  20. Berne, B. J. and Straub, J. E. (1997) Novel methods of sampling phase space in the simulation of biological systems. Curr. Opin. Struct. Biol. 7, 181–189.
    Article CAS PubMed Google Scholar
  21. Sugita, Y. and Okamoto, Y. (2000) Replica-exchange multicanonical algorithm and multi-canonical replica-exchange method for simulating systems with rough energy landscape. Chem. Phys. Lett. 329, 261–270.
    Article CAS Google Scholar
  22. Garcia, A. E. and Sanbonmatsu, K. Y. (2002) Alpha-helical stabilization by side chain shielding of backbone hydrogen bonds. Proc. Nat. Acad. Sci. USA 99, 2782–2787.
    Article CAS PubMed Google Scholar
  23. Zhou, R., Berne, B. J., and Germain, R. (2001) The free energy landscape for betahairpin folding in explicit water. Proc. Natl. Acad. Sci. USA 98, 14,931–14,936.
    Article CAS PubMed Google Scholar
  24. Rhee, Y. M. and Pande, V. S. (2003) Multiplexed-replica exchange molecular dynamics method for protein folding simulation. Biophys. J. 84, 775–786.
    Article CAS PubMed Google Scholar
  25. Ohkubo, Y. Z. and Brooks, C. L. (2003) Exploring flory’s isolated-pair hypothesis: Statistical mechanics of helixcoil transitions in polyalanine and the c-peptide from rnase a. Proc. Natl. Acad. Sci. USA 100, 13,916–13,921.
    Article CAS PubMed Google Scholar
  26. Zhou, R. (2003) Trp-cage: folding free energy landscape in explicit water. Proc. Natl. Acad. Sci. USA 100, 13,280–13,285.
    Article CAS PubMed Google Scholar
  27. Nymeyer, H. and Garcia, A. E. (2003) Interfacial folding of a membrane peptide: replica exchange simulations of walp in a dppc bilayer. Biophys. J. 84, 381A.
    Google Scholar
  28. Zhou, R. (2003) Trp-cage: folding free energy landscape in explicit water. Proc. Natl. Acad. Sci. USA 100, 13,280–13,285.
    Article CAS PubMed Google Scholar
  29. Im, W., Feig, M., and Brooks, C. L. (2003) An implicit membrane generalized born theory for the study of structure, stability, and interactions of membrane proteins. Biophys. J. 85, 2900–2918.
    Article CAS PubMed Google Scholar
  30. Kokubo, H. and Okamoto, Y. (2004) Self-assembly of transmembrane helices of bacteriorhodopsin by a replica-exchange monte carlo simulation. Chem. Phys. Lett. 392, 168–175.
    Article CAS Google Scholar
  31. Munoz, V., Thompson, P. A., Hofrichter, J., and Eaton, W. A. (1997) Folding dynamics and mechanism of β-hairpin formation. Nature 390, 196–199.
    Article CAS PubMed Google Scholar
  32. Zhou, R. (2004) Sampling protein folding free energy landscape: coupling replica exchange method with p3me/respa algorithm. J. Mol. Graph Model. 22, 451–463.
    Article CAS PubMed Google Scholar
  33. Williams, S., Causgrove, T. P., Gilmanshin, R., et al. (1996) Fast events in protein folding: Helix melting and formation in a small peptide. Biochemistry 35, 691–697.
    Article CAS PubMed Google Scholar
  34. Lockhart, D. J. and Kim, P. S. (1993) Electrostatic screening of charge and dipole interactions with the helix backbone. Science 260, 198–202.
    Article CAS PubMed Google Scholar
  35. Thompson, P. A., Eaton, W. A., and Hofrichter, J. (1997) Laser temperature jump study of the helix<=>coil kinetics of an alanine peptide interpreted with a kinetic zipper’ model. Biochemistry 36, 9200–9210.
    Article CAS PubMed Google Scholar
  36. Lednev, I. K., Karnoup, A. S., Sparrow, M. C., and Asher, S. A. (2001) Transient UV Raman spectroscopy finds no crossing barrier between the peptide alphahelix and fully random coil conformation. J. Am. Chem. Soc. 123, 2388–2392.
    Article CAS PubMed Google Scholar
  37. Kitchen, D. B., Hirata, F., Westbrook, J. D., Levy, R. M., Kofke, D., and Yarmush, M. (1990) Conserving energy during molecular dynamics simulations of water, proteins and proteins in water. J. Comp. Chem. 11, 1169–1180.
    Article CAS Google Scholar
  38. Sayle, R. A. and Milner-White, E. J. (1995) Rasmol: biomolecular graphics for all. Trends Biochem. Sci. 20, 374–376.
    Article CAS PubMed Google Scholar
  39. Jorgensen, W. L., Maxwell, D., and Tirado-Rives, J. (1996) Development and testing of the opls all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc. 118, 11,225–11,236.
    Article CAS Google Scholar
  40. Hockney, R. W. and Eastwood, J. W. (1989) Computer Simulation Using Particles. Adam Hilger, Bristol-New York, NY.
    Google Scholar
  41. Tuckerman, M., Berne, B. J., and Martyna, G. J. (1992) Reversible multiple time scale molecular dynamics. J. Chem. Phys. 97, 1990–2001.
    Article CAS Google Scholar
  42. Zhou, R. and Berne, B. J. (1995) A new molecular dynamics method combining the reference system propagator algorithm with a fast multipole method for simulating proteins and other complex systems. J. Chem. Phys. 103, 9444–9459.
    Article CAS Google Scholar
  43. Zhou, R., Harder, E., Xu, H., and Berne, B. J. (2001) Efficient multiple time step method for use with ewald and particle mesh ewald for large biomolecular systems. J. Chem. Phys. 115, 2348–2358.
    Article CAS Google Scholar
  44. Vila, J. A., Ripoll, D. R., and Scheraga, H. A. (2000) Physical reasons for the unusual alpha-helix stabilization afforded by charged or neutral polar residues in alanine-rich peptides. Proc. Natl. Acad. Sci. USA 97, 13,075–13,079.
    Article CAS PubMed Google Scholar
  45. Sundaralingam, M. and Sekharudu, Y. (1989) Water-inserted alpha-helical segments implicate reverse turns as folding intermediates. Science 244, 1333–1337.
    Article CAS PubMed Google Scholar
  46. Munoz, V., Henry, E. R., Hofrichter, J., and Eaton, W. A. (1998) A statistical mechanical model for β-hairpin kinetics. Proc. Natl. Acad. Sci. USA 95, 5872–5879.
    Article CAS PubMed Google Scholar
  47. Blanco, F. J., Rivas, G., and Serrano, L. (1994) A short linear peptide that folds in a native stable β-hairpin in aqueous solution. Nature Struc. Bio. 1, 584–590.
    Article CAS Google Scholar
  48. Pande, V. S. and Rokhsar, D. S. (1999) Molecular dynamics simulations of unfolding and refolding of a β-hairpin fragment of protein g. Proc. Natl. Acad. Sci. USA 96, 9062–9067.
    Article CAS PubMed Google Scholar
  49. Zagrovic, B., Sorin, E. J., and Pande, V. S. (2001) β-hairpin folding simulation in atomistic detail using an implicit solvent model. J. Mol. Biol. 313, 151–169.
    Article CAS PubMed Google Scholar
  50. Dinner, A. R., Lazaridis, T., and Karplus, M. (1999) Understanding β-hairpin formation. Proc. Natl. Acad. Sci. USA 96, 9068–9073.
    Article CAS PubMed Google Scholar
  51. Garcia, A. E. and Sanbonmatsu, K. Y. (2001) Exploring the energy landscape of a β hairpin in explicit solvent. Proteins 42, 345–354.
    Article CAS PubMed Google Scholar
  52. Roccatano, D., Amadei, A., Nola, A. D., and Berendsen, H. J. (1999) A molecular dynamics study of the 41-56 β-hairpin from b1 domain of protein g. Protein Sci. 10, 2130–2143.
    Article Google Scholar
  53. Kolinski, A., Ilkowski, B., and Skolnick, J. (1999) Dynamics and thermodynamics of β-hairpin assembly: insights from various simulation techniques. Biophys. J. 77, 2942–2952.
    Article CAS PubMed Google Scholar
  54. Ma, B. and Nussinov, R. (2000) Molecular dynamics simulations of a β-hairpin fragment of protein G: balance between side-chain and backbone forces. J. Mol. Bio. 296, 1091–1104.
    Article CAS Google Scholar
  55. Ferrenberg, A. M. and Swendsen, R. H. (1989) Optimized Monte Carlo data analysis. Phys. Rev. Lett. 63, 1195–1198.
    Article CAS PubMed Google Scholar
  56. Klimov, D. K. and Thirumalai, D. (2000) Mechanisms and kinetics of beta-hairpin formation. Proc. Natl. Acad. Sci. USA 97, 2544–2549.
    Article CAS PubMed Google Scholar
  57. Dinner, A. R. (1999) Monte carlo simulations of protein folding. PhD Thesis, Harvard University, Cambridge, MA.
    Google Scholar
  58. Walser, P., Mark, A. E., and van Gunsteren, W. F. (2000) On the temperature and pressure dependence of a range of properties of a type of water model commonly used in high-temperature protein unfolding simulations. Biophys. J. 78, 2752–2760.
    Article CAS PubMed Google Scholar
  59. Zhou, R. and Berne, B. J. (2002) Can a continuum solvent model reproduce the free energy landscape of a β-hairpin folding in water? Proc. Natl. Acad. Sci. USA 99, 12,777–12,782.
    Article CAS PubMed Google Scholar
  60. Zhou, R. (2003) Free energy landscape of protein folding in water: explicit vs. implicit solvent. Proteins 53, 148–161.
    Article CAS PubMed Google Scholar
  61. Yoda, T., Sugita, Y., and Okamoto, Y. (2000) Comparisons of force fields for proteins by generalized-ensemble simulations. J. Chem. Phys. 113, 6042–6051.
    Article Google Scholar
  62. Zhou, R., Krilov, G., and Berne, B. J. (2004) Comment on “can a continuum solvent model reproduce the free energy landscape of a beta-hairpin folding in water?.” J. Phys. Chem. B. 108, 7528–7530.
    Article CAS Google Scholar
  63. Sugita, Y. and Okamoto, Y. (1999) Replica-exchange molecular dynamics method for protein folding. Chem. Phys. Lett. 314, 141–151.
    Article CAS Google Scholar
  64. Duane, S., Kennedy, A. D., Pendleton, B. J., and Roweth, D. (1987) Hybrid Monte Carlo. Phys. Lett. B 195, 216–222.
    Article CAS Google Scholar
  65. Sugita, Y., Kitao, A., and Okamoto, Y. (2000) Multidimensional replica-exchange method for free-energy calculations. Chem. Phys. Lett. 329, 261–270.
    Article CAS Google Scholar
  66. Whitfield, T. W., Bu, L., and Straub, J. E. (2002) Generalized parallel sampling. Physica A 305, 157–171.
    Article Google Scholar
  67. Liu, P., Huang, X., Zhou, R., and Berne, B. J. (2006) Hydrophobic aided replica exchange method. J. Chem. Phys. 110, in press.
    Google Scholar

Download references