Oxidative stress and diabetic cardiomyopathy (original) (raw)
References
Grundy, S.M., Benjamin, I.J., Burke, G.L., Chait, A., Eckel, R.H., Howard, B.V., et al. (1999). Diabetes and cardiovascular disease: a statement for healthcare professionals from the American heart association. Circulation100:1134–1146. PubMedCAS Google Scholar
Sowers, J.R., Epstein, M., and Frohlich, E.D. (2001). Diabetes, hypertension, and cardiovascular disease in update. Hypertension37:1053–1059. PubMedCAS Google Scholar
Baynes, J.W. and Thorpe, S.R. (1999). Role of oxidative stress in diabetic complications: a new perspective on an old paradigm. Diabetes48:1–9. ArticlePubMedCAS Google Scholar
Koufen, P., Ruck, A., Brdiczka, D., Wendt, S., Walliman, T., and Stark, G. (1999). Free radical-induced inactivation of creatine kinase: influence on the octameric and dimeric states of the mitochondrial enzyme (Mib-CK). Biochem. J.344:413–417. ArticlePubMedCAS Google Scholar
Kowluru, R.A., Engerman, R.L., and Kern, T.S. (2000). Diabetes-induced metabolic abnormalities in myocardium: effect of antioxidant therapy. Free Radical Res.32:67–74. ArticleCAS Google Scholar
Ustinova, E.E., Barrett, C.J., Sun, S.Y., and Schultz, H.D. (2000). Oxidative stress impairs cardiac chemoreflexes in diabetic rats. Am. J. Physiol. (Heart Circ. Physiol.)279: 2176–2187. Google Scholar
Uemura, S., Matsushita, H., Li, W., Glassford, A.J., Asagami, T., Lee, K.H., et al. (2001) Diabetes mellitus enhances vascular matrix metalloproteinase activity: role of oxidative stress. Circ. Res.88:1291–1298. PubMedCAS Google Scholar
McDonagh, P.F. and Hokama, J.Y. (2000). Microvascular perfusion and transport in the diabetic heart. Microcirculation7:163–181. ArticlePubMedCAS Google Scholar
Johnstone, M.T. and Veves, A. (2001). Diabetes and Cardiovascular Disease. Humana, Totowa, NJ. Google Scholar
Rosen, P., Nawroth, P.P., King, G., Moller, W., Tritschler, H.J., and Packer, L. (2001). The role of oxidative stress in the onset and progression of diabetes and its complications: a summary of a Congress Series sponsored by UNESCO-MCBN, the American Diabetes Association and the German Diabetes Society. Diabet. Metab. Res. Rev.17:189–212. ArticleCAS Google Scholar
Richardson, P., McKenna, W., Bristow, M., Maisch, B., Mautner, B., O’Connell, J., et al. (1996). Report of the 1995 World Health Organization/International Society and Federation of Cardiology Task force on the definition and classification of cardiomyopathies. Circulation93:841–842. PubMedCAS Google Scholar
Rubler, S., Dlugash, J., Yuceoglu, Y.Z., Kumral, T., Branwood, A.W., and Grishman, A. (1972). New type of cardiomyopathy associated with diabetic glomerulosclerosis. Am. J. Cardiol.30:595–602. ArticlePubMedCAS Google Scholar
Stone, P.H., Muller, J.E., Hartwell, T., York, B.J., Rutherford, J.D., Parker, C.B., et al. (1989). The effect of diabetes mellitus on prognosis and serial left ventricular function after acute myocardial infarction: contribution of both coronary disease and diastolic left ventricular dysfunction to the adverse prognosis. J. Am. Coll. Cardiol.14:49–57. ArticlePubMedCAS Google Scholar
Kannel, W.B., Hjortland, M., and Castelli, W.P. (1974). Role of diabetes in congestive heart failure. The Framingham Study. Am. J. Cardiol.34:29–34. ArticlePubMedCAS Google Scholar
Devereux, R.B., Roman, M.J., Paranicas, M., O’Grady, M.J., Lee, E.T., Welty, T.K., et al. (2000). Impact of diabetes on cardiac structure and function: the strong heart study. Circulation101:2271–2276. PubMedCAS Google Scholar
Van Hoeven, K.H. and Factor, S.M. (1990). A comparison of the pathological spectrum of hypertensive, diabetic, and hypertensive-diabetic heart disease. Circulation82:848–855. PubMed Google Scholar
Gustafsson, I. and Hilderbrandt, P. (2001). Editorial. Early failure of the diabetic heart. Diabetes Care24:3–4. ArticlePubMedCAS Google Scholar
Roper, N.A., Bilous, R.W., Kelly, W.F., Unwin, N.C., and Connolly, V.M. (2001). Excess mortality in a population with diabetes and the impact of material deprivation: longitudinal, population based study. Br. Med. J.322:1389–1393. ArticleCAS Google Scholar
Chatham, J.C., Forder, J.R., and McNeill, J.H. (1996). The Heart in Diabetes. Kluwer Academic, Norwell, MA. Google Scholar
Guertl, B., Noehammer, C., and Hoefler, G. (2000). Metabolic cardiomyopathies. Int. J. Exp. Pathol.81:349–372. ArticlePubMedCAS Google Scholar
Chatham, J.C., Gao, Z.P., and Forder, J.R. (1999). Impact of 1 wk of diabetes on the regulation of myocardial carbohydrate and fatty acid oxidation. Am. J. Physiol.277: E342-E351. PubMedCAS Google Scholar
Marshall, B.A., Hansen, P.A., Ensor, N.J., Ogden, M.A., and Mueckler, M. (1999). GLUT-1 or GLUT-4 transgenes in obese mice improve glucose tolerance but do not prevent insulin resistance. Am. J. Physiol.276:E390-E400. PubMedCAS Google Scholar
Halseth, A.E., Bracy, D.P., and Wasserman, D.H. (1999). Overexpression of hexokinase II increases insulin and exercise-stimulated muscle glucose uptake in vivo. Am. J. Physiol.276:E70-E77. PubMedCAS Google Scholar
Heikkinen, S., Pietila, M., Halmekyto, M., Suppola, S., Pirinen, E., Deeb, S.S., et al. (1999). Hexokinase II-deficient mice: prenatal death of homozygotes without disturbances in glucose tolerance in heterozygotes. J. Biol. Chem.274:22,517–22,520. ArticleCAS Google Scholar
Rodrigues, B., Cam, M.C., and McNeill, J.H. (1998). Metabolic disturbances in diabetic cardiomyopathy. Mol. Cell. Biochem.180:53–57. ArticlePubMedCAS Google Scholar
Williamson, J.R., Chang, K., Frangos, M., Hasan, K.S., Ido, Y., Kawamura, T., et al. (1993). Hyperglycemic pseudohypoxia and diabetic complications. Diabetes42:801–813. ArticlePubMedCAS Google Scholar
Ramasamy, R., Oates, P.J., and Schaefer, S. (1997). Aldose reductase inhibition protects diabetic and non-diabetic rat hearts from ischemic injury. Diabetes46:292–300. ArticlePubMedCAS Google Scholar
Trueblood, N. and Ramasamy, R. (1998). Aldose reductase inhibition improves altered glucose metabolism of isolated diabetic rat hearts. Am. J. Physiol. (Heart Circ. Physiol.)275:75–83. Google Scholar
Nishikawa, T., Edelstein, D., Du, X.L., Yamagishi, S., Matsumura, T., Kaneda, Y., et al. (2000): Normalizing mitochondrial superoxide production blocks three pathways of hyperglycemic damage. Nature404:787–790. ArticlePubMedCAS Google Scholar
Pogatsa, G. (2001). Metabolic energy metabolism in diabetes: therapeutic implications. Coron. Artery Dis.12(Suppl. 1): S29-S33. PubMed Google Scholar
Knuuti, J., Takala, T.O., Nagren, K., Sipila, H., Turpeinen, A.K., Uusitupa, M.I.J., et al. (2001). Myocardial fatty acid oxidation in patients with impaired glucose tolerance. Dia-betologia44:184–187. CAS Google Scholar
Pawelczyk, T., Sakowicz, M., Szczepanska-Konkel, M., and Angielski, S. (2000). Decreased expression of adenosine kinase in streptozotocin-induced diabetes mellitus rats. Arch. Biochem. Biophys.375:1–6. ArticlePubMedCAS Google Scholar
Spindler, M., Saupe, K.W., Tian, R., Ahmed, S., Matlib, M.A., and Ingwall, J.S. (1999). Altered creatine kinase enzyme kinetics in diabetic cardiomyopathy. A 31P NMR magnetization transfer study of the intact beating rat heart. J. Mol. Cell. Cardiol.31:2175–2189. ArticlePubMedCAS Google Scholar
Depre, C., Young, M.E., Ying, J., Ahuja, H.S., Han, Q., Garza, N., et al. (2000). Streptozotocin-induced changes in cardiac gene expression in the absence of severe contractile dysfunction. J. Mol. Cell. Cardiol.32:985–996. ArticlePubMedCAS Google Scholar
Sambandam, N., Abrahamni, M.A., Craig, S., Al-Atar, O., Jeon, E., and Rodrigues, B. (2000). Metabolism of VLDL is increased in streptozotocin-induced diabetic rat hearts. Am. J. Physiol. (Heart. Circ. Physiol.)278:1874–1882. Google Scholar
Solang, L., Malmberg, K., and Ryden, L. (1999). Diabetes mellitus and congestive heart failure. Eur. Heart. J.20: 789–795. ArticlePubMedCAS Google Scholar
Kawaguchi, M., Techigawara, M., Ishihata, T., Asakura, T., Saito, F., Maehara, K., et al. (1997). A comparison of ultrastructural changes on endomyocardial biopsy specimens obtained from patients with diabetes mellitus with and without hypertension. Heart Vessels12:267–274. PubMedCAS Google Scholar
Tomita, M., Mukae, S., Geshi, E., Umetsu, K., Nakatani, M., and Katagiri, T. (1996). Mitochondrial respiratory impairment in streptozotocin-induced diabetic rat heart. Jpn. Circ. J.60:673–682. ArticlePubMedCAS Google Scholar
Kuller, L.H., Velentgas, P., Barzilay, J., Beauchamp, N.J., O’Leary, D.H., and Savage, P.J. (2000). Diabetes mellitus: subclinical cardiovascular disease and risk of incident cardiovascular disease and all-cause mortality. Arterioscler. Thromb. Vasc. Biol.20:823–829. PubMedCAS Google Scholar
Mathis, D.R., Liu, R.R., Rodrigues, B.B., and McNeill, J.H. (2000). Effect of hypertension on the development of diabetic cardiomyopathy. Can. J. Physiol. Pharmacol.78: 791–798. ArticlePubMedCAS Google Scholar
Golfman, L., Dixon, I.M., Takeda, N., Lukas, A., Dakshinamurti, K., and Dhalla, N.S. (1998). Cardiac sarcolemmal Na+−Ca2+ exchange and Na+−K+ATPase activities and gene expression in alloxan-induced diabetes in rats. Mol. Cell Biochem.188:91–101. ArticlePubMedCAS Google Scholar
Tanaka, Y., Kashiwagi, A., Saeki, Y., and Shigeta, Y. (1992). Abnormalities in cardiac alpha 1-adrenoceptor and its signal transduction in streptozocin-induced diabetic rats. Am. J. Physiol.263:E425-E429. PubMedCAS Google Scholar
Dincer, U.D., Bidasee, K.R., Guner, S., Tay, A., Ozcelikay, A.T., and Altan, V.M. (2001). The effect of diabetes on expression of beta1-, beta2-, and beta3-adrenoreceptors in rat hearts. Diabetes50:455–461. ArticlePubMedCAS Google Scholar
Singh, J.P., Larson, M.G., O’Donnell, C.J., Wilson, P.F., Tsuji, H., Lloyd-Jones, D.M., et al. (2000). Association of hyperglycemia with reduced heart rate variability (The Framingham Heart Study). Am. J. Cardiol.86:309–312. ArticlePubMedCAS Google Scholar
Poirier, P., Garneau, C., Marois, L., Bogaty, P., and Dumesnil, J.G. (2001). Diastolic dysfunction in normotensive men with well-controlled type-2 diabetes: importance of maneuvers in echocardiographic screening for preclinical diabetic cardiomyopathy. Diabetes Care24:5–10. ArticlePubMedCAS Google Scholar
Buyukgebiz, A., Saylam, G., Dundar, B., Bober, E., Unal, N., and Akcoral, A. (2000). Dilated cardiomyopathy as the first early complication in a 14-year-old girl with diabetes mellitus type 1. J. Pediatr. Endocrinol. Metab.13:1143–1146. PubMedCAS Google Scholar
Ren, J. and Bode, M. (2000). Altered cardiac excitation-contraction coupling in ventricular myocytes from spontane-ously diabetic BB rats. Am. J. Physiol. (Heart Circ. Physiol.)279:238–244. Google Scholar
Ren, J. and Davidoff, A.J. (1997). Diabetes rapidly induces contractile dysfunctions in isolated ventricular myocytes. Am. J. Physiol. (Heart Circ. Physiol.)272:148–158. Google Scholar
Joffe, II., Travers, K.E., Perreault-Micale, C.L., Hampton, T., Katz, S.E., Morgan, J.P., et al. (1999). Abnormal cardiac function in the streptozotocin-induced non-insulin-dependent diabetic rat: noninvasive assessment with doppler echocardiography and contribution of the nitric oxide pathway. J. Am. Coll. Cardiol.34:2111–2119. ArticlePubMedCAS Google Scholar
Satoh, N., Sato, T., Shimada, M., Yamada, K., and Kitada, Y. (2001). Lusitropic effect of MCC-135 is associated with improvement of sarcoplasmic reticulum function in ventricular muscles of rats with diabetic cardiomyopathy. J. Pharmacol. Exp. Ther.298:1161–1166. PubMedCAS Google Scholar
Belke, D.D., Larsen, T.S., Gibbs, E.M., and Severson, D.L. (2000). Altered metabolism caused cardiac dysfunction in perfused hearts from diabetic (db/db) mice. Am. J. Physiol. Endocrinol. Metab.279:1104–1113. Google Scholar
Kang, Y.J. (2001). Molecular and cellular mechanisms of cardiotoxicity. Environ. Health Perspect.109(Suppl. 1): 27–34. ArticlePubMedCAS Google Scholar
Taniguchi, N., Kaneto, H., Asahi, M., Takahashi, M., Wenyi, C., Higashiyama, S., et al. (1996). Involvement of glycation and oxidative stress in diabetic macroangiopathy. Diabetes45(Suppl. 3):S81-S83. PubMedCAS Google Scholar
Wolff, S.P., Jiang, Z.Y., and Hunt, J.V. (1991). Protein glycation and oxidative stress in diabetes mellitus and ageing. Free Radical Biol. Med.10:339–359. ArticleCAS Google Scholar
Mowri, H.O., Frei, B., and Keaney, J.F., Jr. (2000). Glucose enhancement of LDL oxidation is strictly metal ion dependent. Free Radical Biol. Med.29:814–824. ArticleCAS Google Scholar
Finotti, P., Pagetta, A., and Ashton, T. (2001). The oxidative mechanism and reduces the degree of glycooxidative modifications on human serum albumin. Eur. J. Biochem.268:2193–2200. ArticlePubMedCAS Google Scholar
Diedrich, D., Skoper, J., Diedrich, A., and Dai, F.X. (1994). Endothelial dysfunction in mesenteric resistance arteries of diabetic rats: role of free radicals. Am. J. Physiol.266:H1153-H1161. Google Scholar
Giardino, I., Fard, A.K., Hatchell, D.L., and Brownlee, M. (1998). Aminiguanidine inhibits reactive oxygen species formation, lipid peroxidation, and oxidant-induced apoptosis. Diabetes47:1114–1120. ArticlePubMedCAS Google Scholar
Rosen, P., Du, X., and Tschope, D. (1998). Role of oxygen derived radicals for vascular dysfunction in the diabetic heart: prevention by alpha-tocopherol? Mol. Cell. Biochem.188:103–111. ArticlePubMedCAS Google Scholar
Du, X.L., Stockklauser-Farber, K., and Rosen, P. (1999). Generation of reactive oxygen intermediates, activation of NFkappaB, and induction of apoptosis in human endothelial cells by glucose: role of nitric oxide synthase? Free Radical Med. Biol.27:752–763. ArticleCAS Google Scholar
Ha, H. and Lee, H.B. (2000). Reactive oxygen species as glucose signaling molecules in mesangial cells cultured under high glucose. Kidney Int.58(Suppl. 77):S19-S25. Article Google Scholar
Wu, Q.D., Wang, J.H., Fennessy, F., Redmond, H.P., and Bouchier-Hayes, D. (1999). Taurine prevents high-glucose-induced human vascular endothelial cell apoptosis. Am. J. Physiol.277:C1229-C1238. PubMedCAS Google Scholar
Inoguchi, T., Li, P., Umeda, F., Yu, H.Y., Kakimoto, M., Imamura, M., Aoki, T., et al. (2000). High glucose level and free fatty acid stimulate reactive oxygen species production through protein kinase C-dependent activation of NAD(P)H oxidase in cultured vascular cells. Diabetes49: 1939–1945. ArticlePubMedCAS Google Scholar
Peiro, C., Lafuente, N., Matesanz, N., Cercas, E., Llergo, J.L., Vallejo, S., et al. (2001). High glucose induced cell death of cultured human aortic smooth muscle cells through the formation of hydrogen peroxide. Br. J. Pharmacol.133: 967–974. ArticlePubMedCAS Google Scholar
Yan, S.D., Schmidt, A.M., Anderson, G.M., Zhang, J., Brett, J., Zou, Y.S., et al. (1994). Enhanced cellular oxidant stress by the interaction of advanced glycation end products with their receptors binding proteins. J. Biol. Chem.269:788–791. Google Scholar
Yeh, C.H., Sturgis, L., Haidacher, J., Zhang, X.N., Sherwood, S.J., Bjercke, R.J., et al. (2001). Requirement for p38 and p44/p42 mitogen-activated protein kinases in RAGE-mediated nuclear factor-kappaB transcriptional activation and cytokine secretion. Diabetes50:1495–1504. ArticlePubMedCAS Google Scholar
Kakkar, R., Kalra, J., Mantha, S.V., and Prasad, K. (1995). Lipid peroxidation and activity of antioxidant enzymes in diabetic rats. Mol. Cell. Biochem.151:113–119. ArticlePubMedCAS Google Scholar
Ohuwa, T., Sato, Y., and Naoi, M. (1995). Hydroxyl radical formation in diabetic rats induced by streptozotocin. Life Sci.56:1789–1798. Article Google Scholar
Pennathur, S., Wagner, J.D., Leeuwenbergh, C., Litwak, K.N., and Heinecke, J.W. (2001). A hydroxyl radical-like species oxidizes cynomolgus monkey artery wall proteins in early diabetic vascular disease. J. Clin. Invest.107:853–860. PubMedCAS Google Scholar
Kajstura, J., Fiordaliso, F., Andreoli, A.M., Li, B., Chimenti, S., Marvin, S., et al. (2001). IGF-1 overexpression inhibits the development of diabetic cardiomyopathy and angiotensin II-mediated oxidative stress. Diabetes50:1414–1424. ArticlePubMedCAS Google Scholar
Frustaci, A., Kajstura, J., Chimenti, C., Jakoniuk, I., Leri, A., Maseri, A., et al. (2000). Myocardial cell death in human diabetes. Circ. Res.87:1123–1132. PubMedCAS Google Scholar
Hink, U., Li, H., Mollnau, H., Oelze, M., Matheis, E., Hartmann, M., et al. (2001). Mechanisms underlying endothelial dysfunction in diabetes mellitus. Circ. Res.88:E14-E22. PubMedCAS Google Scholar
Kucharska, J., Braunova, Z., Ulicna, O., Zlatos, L., and Gvozdjakova, A. (2000). Deficit of coenzyme Q in heart and liver mitochondria of rats with streptozotocin-induced diabetes. Physiol. Res.49:411–418. PubMedCAS Google Scholar
Hayashi, H., Iimuro, M., Matsumoto, Y., and Kaneko, M. (1998). Effects of gamma-glutamylcysteine ethyl ester on heart mitochondrial creatine kinase activity: involvement of sulfhydryl groups. Eur. J. Pharmacol.349:133–136. ArticlePubMedCAS Google Scholar
Kaneko, M., Matsumoto, Y., Hayashi, H., Kobayashi, A., and Yamazaki, N. (1994). Oxygen free radicals and calcium homeostasis in the heart. Mol. Cell. Biochem.139:91–100. ArticlePubMedCAS Google Scholar
Matsui, H., Okumura, K., Mukawa, H., Hibino, M., Toki, Y., and Ito, T. (1997). Increased oxysterol contents in diabetic rat hearts: their involvement in diabetic cardiomyopathy. Can. J. Cardiol.13:373–379. PubMedCAS Google Scholar
Siwik, D., Pagano, P.J., and Colucci, W.S. (2001). Oxidative stress regulates collagen synthesis and matrix metallo-proteinase activity in cardiac fibroblasts. Am. J. Physiol. Cell Physiol.280:C53-C60. PubMedCAS Google Scholar
Monnier, V.M., Glomb, M., Elgawish, A., and Sell, D.R. (1996). The mechanism of collagen cross-linking in diabetes: A puzzle nearing resolution. Diabetes45:S67-S72. ArticlePubMedCAS Google Scholar
Yamagishi, S., Edelstein, D., Du, X.-L., and Brownlee, M. (2001). Hyperglycemia potentiates collagen-induced platelet activation through mitochondrial superoxide overproduction. Diabetes50:1491–1494. ArticlePubMedCAS Google Scholar
Doroshow, J.H., Locker, G.Y., and Myers, C.E. (1980). Enzymatic defenses of the mouse heart against reactive oxygen metabolites: alterations produced by doxorubicin. J. Clin. Invest.65:128–135. ArticlePubMedCAS Google Scholar
Chen, Y., Saari, J.T., and Kang, Y.J. (1994). Weak antioxidant defenses make the heart a target for damage in copper-deficient rats. Free Radical Biol. Med.17:529–536. ArticleCAS Google Scholar
Kersten, J.R., Schmeling, T.J., Orth, K.G., Pagel, P.S., and Warltier, D.C. (1998). Acute hyperglycemia abolishes ischemic preconditioning in vivo. Am. J. Physiol.275:H721-H725. PubMedCAS Google Scholar
Joyeux, M., Faure, P., Godin-Ribuot, D., Halimi, S., Patel, A., Yellon, D.M., et al. (1999). Heat stress fails to protect myocardium of streptozotocin-induced diabetic rats against infarction. Cardiovasc. Res.43:939–946. ArticlePubMedCAS Google Scholar
Elangovan, V., Shohami, E., Gati, I., and Kohen, R. (2000). Increased hepatic lipid soluble antioxidant capacity as compared to other organs of streptozotocin-induced diabetic rats: a cyclic voltametry study. Free Radical Res.32:125–134. ArticleCAS Google Scholar
Alici, B., Gumustas, M.K., Ozkara, H., Akkus, E., Demirel, G., Yencilek, F., et al. (2000). Apoptosis in the erectile tissues of diabetic and healthy rats. BJU International85:326–329. ArticlePubMedCAS Google Scholar
Cai, L., Chen, S., Evans, T., Deng, D.X., Mukherjee, K., and Chakrabarti, S. (2000). Apoptotic germ-cell death and testicular damage in experimental diabetes: prevention by endothelin antagonism. Urol. Res.28:342–347. ArticlePubMedCAS Google Scholar
Srinivasan, S., Stevens, M., and Wiley, J.W. (2000). Diabetic peripheral neuropathy: evidence for apoptosis and associated mitochondrial dysfunction. Diabetes49:1932–1938. ArticlePubMedCAS Google Scholar
Fiordaliso, F., Li, B., Latini, R., Sonnenblick, E.H., Anversa, P., Leri, A., et al. (2000). Myocyte death in streptozotocin-induced diabetes in rats is angiotensin II-dependent. Lab. Invest.80:531–527. Google Scholar
Listenberger, L.L., Ory, D.S., and Schaffer, J.E. (2001). Palmitate-induced apoptosis can occur through a ceramide-independent pathway. J. Biol. Chem.276:14,890–14,895. ArticleCAS Google Scholar
Chi, M.M., Pingsterhause, J., Carayannopoulos, M., and Moley, K.H. (2000). Decreased glucose transporter expression triggers BAX-dependent apoptosis in the murine blastocyst. J. Biol. Chem.275:40,252–40,257. CAS Google Scholar