The Study of Apoptosis Induced by Allicin in HT-9/HL-60 and its Transfection Cell | Scientific.Net (original) (raw)

[1] Ghosh S, Bandyopadhyay S, Pal S, Das B, Bhattacharya DK, and Mandal C. Increased interferon gamma production by peripheral blood mononuclear cells in response to stimulation of over expressed diseasespecific 9-O-acetylated sialoglycoconjugates in children suffering from acute lymphoblastic leukemia. British J Haematol, vol. 128, no. 1, pp.35-41, January (2005).

DOI: 10.1111/j.1365-2141.2004.05256.x

Google Scholar

[2] Pal S, Ghosh S, Bandyopadhyay S, Mandal C, Bandhyopadhyay S, Bhattacharya DK, et al. Differential expression of 9-O-acetylated sialoglycoconjugates on leukemic blasts: a potential tool for long-term monitoring of children with acute lymphoblastic leukaemia. Inter J Cancer, vol. 111, no. 2, pp.270-277, August (2004).

DOI: 10.1002/ijc.20246

Google Scholar

[3] Chitra M, Chatterjee M, Sinha D, Investigation of 9-O-Acetylated sialogly- cocongugates in childhood acute lymphoblastic leukaemia. British J Haematol, vol. 110, no. 4, pp.801-812, September (2000).

DOI: 10.1046/j.1365-2141.2000.02105.x

Google Scholar

[4] Sinha D, Mandal C, Bhattacharya DK, Identification of 9-O acetyl sialoglycoconjugates (9-OAcSGs) as biomarkers in childhood acute lymphoblastic leukemia using a lectin, AchatininH, as a probe, Leukemia, vol. 13, no. 1, pp.119-125, January (1999).

DOI: 10.1038/sj.leu.2401239

Google Scholar

[5] Appelbaum FR, Gundacker H, Head DR, Slovak ML, Willman CL, Godwin JE, et al. Age and acute myeloid leukemia. Blood, vol. 107, no. 9, pp.3481-3485, May (2006).

DOI: 10.1182/blood-2005-09-3724

Google Scholar

[6] Frohling S, Schlenk RF, Kayser S, Morhardt M, Benner A, Dohner K, et al. Cytogenetics and age are major determinants of outcome in intensively treated acute myeloid leukemia patients older than 60 years: results from AMLSG trial AML HD98-B. Blood, vol. 108, no. 10, pp.3280-3288, November (2006).

DOI: 10.1182/blood-2006-04-014324

Google Scholar

[7] Drach J, Zhao S, Drach D, Korbling M, Engel H, Andreeff M. Expression of MDR1 by normal bone marrow cells and its implication for leukemic hematopoiesis. Leuk Lymphoma, vol. 16, no. 5, pp.419-424, February (1995).

DOI: 10.3109/10428199509054428

Google Scholar

[8] Malayeri R, Filipits M, Suchomel RW, Zochbauer S, Lechner K, Pirker R. Multidrug resistance in leukemias and its reversal. Leuk Lymphoma, vol. 23, no. 5, pp.451-458, November (1996).

DOI: 10.3109/10428199609054853

Google Scholar

[9] Pui CH, Robison LL, Look AT, Acute lymphoblastic leukaemia. Lancet, vol. 371, no. 9617, pp.1030-1043, March (2008).

DOI: 10.1016/s0140-6736(08)60457-2

Google Scholar

[10] Liu XL, Tee H W, Go ML. Functionalized chalcones as selective inhibitors of P-glycoprotein and breast cancer resistance protein [J]. Bioorg Med Chem, vol. 16, no. 1, pp.171-180, January (2008).

DOI: 10.1016/j.bmc.2007.10.006

Google Scholar

[11] Gao P , Zhou G Y, Lei D P , Zhang XF, Li L, Xu JW, et al. Selection of antisense oligonucleotides for reversal of multidrug resistance in breast carcinoma cells. Cytotherapy, vol. 9, no. 8, pp.795-801, October (2007).

DOI: 10.1080/14653240701656087

Google Scholar

[12] Kowalski P, Surowiak P, Lage H. Reversal of different drug-resistant phenotypes by an autocatalytic multitarget multiribozyme directed against the transcripts of the ABC transporters MDR1/P-gp, MRP2, and BCRP. Mol Ther, vol. 11, no. 4, pp.508-522, April (2005).

DOI: 10.1016/j.ymthe.2004.11.016

Google Scholar

[13] El-Khoury V, Breuzard G, Fourré N , Dufer J. The histone deacetylase inhibitor trichostatin A downregulates human MDR1 (ABCB1) gene expression by a transcription-dependent mechanism in a drug-resistant small cell lung carcinoma cell line model. Br J Cancer, vol. 97, no. 4, pp, 562-573, August (2007).

DOI: 10.1038/sj.bjc.6603914

Google Scholar

[14] Kaszubiak A, Holm P S, Lage H. Overcoming the classical multidrug resistance phenotype by adenoviral delivery of anti-MDR1 short hairpin RNAs and ribozymes. Int J Oncol, vol. 31, no. 2, pp.419-430, August (2007).

DOI: 10.3892/ijo.31.2.419

Google Scholar

[15] Berezhna S Y, Supekova L, Supek F, Schultz PG, Deniz AA. siRNA in human cells selectively localizes to target RNA sites. Proc Natl Acad Sci U S A. vol. 103, no. 20, pp.7682-7687, May (2006).

DOI: 10.1073/pnas.0600148103

Google Scholar

[16] Jaskiewicz L, Filipowicz W. Role of Dicer in posttranscriptional RNA silencing. Curr Top Microbiol Immunol, vol. 320, pp.77-97, (2008).

DOI: 10.1007/978-3-540-75157-1_4

Google Scholar

[17] Shao SL, Sun YY, Li XY, Zhang WW, Fu B, Yun DZ, et al. The reversion effect of the RNAi-silencing mdr1 gene on multidrug resistance of the leukemia cell HT9. Cell biology intemational, vol. 32, no. 8, pp.893-898, August (2008).

DOI: 10.1016/j.cellbi.2008.03.021

Google Scholar

[18] Shao SL, Zhang WW, Li XY, Zhang ZZ, Yun DZ, Fu B, et al. Reversal of MDR1 gene-dependent multidrug resistance in HL60/HT9 cells using short hairpin RNA expression vectors. Cancer Biother Radiopham, vol. 25, no. 2, pp.171-177, April (2010).

DOI: 10.1089/cbr.2008.0611

Google Scholar

[19] Gottesman MM, Fojo T, Bates S E. Multidrug resistance in cancer: role of ATP-dependent transporters. Nat Rev Cancer, vol. 2, no. 1, pp.48-58, January (2002).

DOI: 10.1038/nrc706

Google Scholar

[20] Xu, D, Ye D, Fisher M, and Juliano RL. Selective inhibition of P-glycoprotein expression in multidrug- resistant tumor cells by a designed transcriptional regulator. J Pharmacol Exp Ther, vol. 302, no. 3, pp.963-971, September (2002).

DOI: 10.1124/jpet.102.033639

Google Scholar

[21] Mechetner EB and Roninson IB. Efficient inhibition of P-glycoprotein mediated multidrug resistance with a monoclonal antibody. Proc Natl Acad Sci USA, vol. 89, no. 13, pp.5824-5828, July (1992).

DOI: 10.1073/pnas.89.13.5824

Google Scholar

[22] Boutros M, Ahringer J, The art and design of genetic screens: RNA interference. Nat Rev Genet, vol. 9, no. 7, pp.554-566, July (2008).

DOI: 10.1038/nrg2364

Google Scholar

[23] Castanotto D, Rossi JJ, The promises and pitfalls of RNA interference-based therapeutics. Nature, vol. 457, no. 7228, pp.426-433, January (2009).

DOI: 10.1038/nature07758

Google Scholar

[24] Li Y, Yang L, Cui JT, Li WM, Guo RF, Lu YY. Construction of cDNA representational difference analysis based on two cDNA libraries and identification of garlic inducible expression genes in human gastric cancer cells. World J Gastroenterol, vol. 8, no. 2, pp.208-212, April (2002).

DOI: 10.3748/wjg.v8.i2.208

Google Scholar

[25] Arditti FD, Rabinkov A, Miron T, Reisner Y, Berrebi A, Wilchek M, et al. Apoptotic killing of B-chronic lymphocytic leukemia tumor cells by allicin generated in situ using a rituximab-alliinase conjugate. Mol Cancer Ther, vol. 4, no. 2, pp.325-331, February (2005).

DOI: 10.1158/1535-7163.325.4.2

Google Scholar

[26] Iovino CS, Camacho LH. Acute myeloid leukemia: a classification and treatment update. Clin J Oncol Nurs, vol. 7, no. 5, pp.535-540, September-October (2003).

Google Scholar

[27] Cao TM, Coutre SE. T-cell prolymphocytic leukemia: update and focus on alemtuzumab (Campath-1H). Hematology, vol. 8, no. 1, pp.1-6, February (2003).

DOI: 10.1080/1024533021000059465

Google Scholar