Machine learning for classification of hypertension subtypes using multi-omics: a multi-centre, retrospective, data-driven study (original) (raw)
Authors:
Reel, P. S., Reel, S., van Kralingen, J. C., Langton, K., Lang, K., Erlic, Z., Larsen, C. K., Amar, L., Pamporaki, C., Mulatero, P., Blanchard, A., Kabat, M., Robertson, S., MacKenzie, S. M., Taylor, A. E., Peitzsch, M., Ceccato, F., Scaroni, C., Reincke, M., Kroiss, M., Dennedy, M. C., Pecori, A., Monticone, S., Deinum, J., Rossi, G. P., Lenzini, L., McClure, J. D., Nind, T., Riddell, A., Stell, A., Cole, C., Sudano, I., Prehn, C., Adamski, J., Gimenez-Roqueplo, A.-P., Assié, G., Arlt, W., Beuschlein, F., Eisenhofer, G., Davies, E., Zennaro, M.-C., and Jefferson, E.
Copyright Holders:
Copyright © 2022 The Authors
First Published:
First published in EBioMedicine 84: 104276
Publisher Policy:
Reproduced under a Creative Commons License