Extracellular signal-regulated kinase mitogen-activated protein kinase-dependent SOCS-3 gene induction requires c-Jun, signal transducer and activator of transcription 3, and specificity protein 3 transcription factors (original) (raw)
Wiejak, Jolanta, Dunlop, Julia ORCID: https://orcid.org/0000-0003-3180-6763, Gao, Shan, Borland, Gillian and Yarwood, Stephen J.(2012) Extracellular signal-regulated kinase mitogen-activated protein kinase-dependent SOCS-3 gene induction requires c-Jun, signal transducer and activator of transcription 3, and specificity protein 3 transcription factors.Molecular Pharmacology, 81(5), pp. 657-668. (doi: 10.1124/mol.111.076976)
Full text not currently available from Enlighten.
Publisher's URL: http://dx.doi.org/10.1124/mol.111.076976
Abstract
SOCS-3 gene induction by cAMP-elevating agents or the protein kinase C (PKC) activator, phorbol 12-myristate 13-acetate (PMA), in primary HUVECs was found to require PKCη- and PKCε-dependent extracellular signal-regulated kinase (ERK) activation. The minimal, ERK-responsive element of the SOCS-3 promoter was localized to a region spanning nucleotides −107 to the transcription start site and contains conserved binding sites for AP-1 and SP1/SP3 transcription factors, as well as proximal and distal signal transducer and activator of transcription (pSTAT and dSTAT) binding elements. All three classes of transcription factor were activated in response to ERK activation. Moreover, representative protein components of each of these transcription factor binding sites, namely c-Jun, STAT3, and SP3, were found to undergo ERK-dependent phosphorylation within their respective transactivation domains. Mutational analysis demonstrated an absolute requirement for the SP1/SP3 binding element in controlling basal transcriptional activity of the minimal SOCS-3 promoter. In addition AP-1, pSTAT, and SP1/SP3 binding sites were required for ERK-dependent, PMA-stimulated SOCS-3 gene activation. The dSTAT site seems to be important for supporting activity of the AP-1 site, because combined deletion of both sites completely blocks transcriptional activation of SOCS-3 by PMA. Together these results describe novel, ERK-dependent regulation of transcriptional activity that requires codependent activation of multiple transcription factors within the same region of the SOCS-3 gene promoter.
| Item Type: | Articles |
|---|---|
| Status: | Published |
| Refereed: | Yes |
| Glasgow Author(s) Enlighten ID: | Dunlop, Mrs Julia and Borland, Dr Gillian and Yarwood, Dr Stephen and Wiejak, Dr Jolanta |
| Authors: | Wiejak, J., Dunlop, J., Gao, S., Borland, G., and Yarwood, S. J. |
| College/School: | College of Medical Veterinary and Life Sciences > School of Molecular Biosciences |
| Journal Name: | Molecular Pharmacology |
| Journal Abbr.: | Mol. Pharmacol. |
| Publisher: | American Society for Pharmacology and Experimental Therapeutics |
| ISSN: | 0026-895X |
| ISSN (Online): | 1521-0111 |
| Published Online: | 06 February 2012 |
| Related URLs: | PubMed |
University Staff: Request a correction | Enlighten Editors: Update this record
Funder and Project Information
1
EPAC1 and ERK-dependent activation of C/EBP transcription factors: a new cyclic AMP-activated anti-inflammatory gene expression module in vascular endothelial cells
Timothy Palmer
PG/08/125/26415
RI CARDIOVASCULAR & MEDICAL SCIENCES
1
The Role of EPAC1-regulated Protein Kinase C Isoforms in Mediating C/EBPdelta -dependent, Anti-inflammatory Actions of Cyclic AMP in Vascular Endothelial Cells
Stephen Yarwood
PG/10/026/28303
RI MOLECULAR CELL & SYSTEMS BIOLOGY
Deposit and Record Details
| ID Code: | 74049 |
|---|---|
| Depositing User: | Mr Stuart Morrison |
| Datestamp: | 15 Jan 2013 14:40 |
| Last Modified: | 01 May 2025 22:27 |
| Date of first online publication: | 6 February 2012 |