Manideep Mamindlapally | Indian Institute of Technology Kharagpur (original) (raw)
Uploads
Papers by Manideep Mamindlapally
2022 IEEE Information Theory Workshop (ITW)
Луцький національний технічний університет, Луцьк, 2017
2022 14th International Conference on COMmunication Systems & NETworkS (COMSNETS)
We show that entirely information theoretic methods, based on von Neumann entropies and their pro... more We show that entirely information theoretic methods, based on von Neumann entropies and their properties, can be used to derive Singleton bounds on the performance of entanglement-assisted hybrid classical-quantum (EACQ) error correcting codes. Concretely we show that the triple-rate region of qubits, cbits and ebits of possible EACQ codes over alrbitrary alphabet sizes is contained in the quantum Shannon theoretic rate region of an associated memoryless erasure channel, which turns out to be a polytope. We show that a large part of this region is attainable by certain EACQ codes, whenever the local alphabet size (i.e. Hilbert space dimension) is large enough, in keeping with known facts about classical and quantum minimum distance separable (MDS) codes: in particular all of its extreme points and several important extremal lines.
Korean Music Education Society, 2021
2021 IEEE International Symposium on Information Theory (ISIT), 2021
We study the problem of commitment over channels under cost constraints. Commitment is a widely s... more We study the problem of commitment over channels under cost constraints. Commitment is a widely studied cryptographic primitive, where two mutually distrustful parties, say Alice and Bob, interact over two phases of a protocol, viz., commit phase followed by reveal phase, to achieve commitment on a bit string available to Alice. Commitment (over the string) is said to occur if (i) Alice commits to the string which remains securely hidden from Bob at the end of the commit phase involving Alice's transmission to Bob, and (ii) Alice reveals a string to Bob and Bob is able to successfully detect whether the string is the committed one or not. When Alice and Bob are computationally unbounded, i.e., under the information-theoretic setting, it is well known that even a single bit commitment is impossible when the channel available to Alice and Bob is noiseless. Noisy channels, however, offer the potential of non-zero commitment rate, and thus, are a valuable resource. We study information-theoretically secure commitment over noisy discrete memoryless channels (DMCs). The largest commitment throughput over noisy channels is called the commitment capacity or simply capacity. In this work, we completely characterize via a single-letter expression, the commitment capacity of DMCs under general cost constraints; this generalizes the previously known result in the absence of such cost constraints. We show that cost constrained commitment capacity of any given DMC can significantly differ from its unconstrained value. We also present a dual capacity characterization in terms of output distributions. Interestingly, we show that every input distribution achieving the capacity results in the same output distribution; the latter is the unique optimizer of our dual capacity expression.
IEEE Journal on Selected Areas in Communications, 2022
2021 IEEE Information Theory Workshop (ITW)
IEEE International Symposium on Information Theory (ISIT), 2021
We study the problem of commitment over channels under cost constraints. Commitment is a widely s... more We study the problem of commitment over channels under cost constraints. Commitment is a widely studied cryptographic primitive, where two mutually distrustful parties, say Alice and Bob, interact over two phases of a protocol, viz., commit phase followed by reveal phase, to achieve commitment on a bit string available to Alice. Commitment (over the string) is said to occur if (i) Alice commits to the string which remains securely hidden from Bob at the end of the commit phase involving Alice's transmission to Bob, and (ii) Alice reveals a string to Bob and Bob is able to successfully detect whether the string is the committed one or not. When Alice and Bob are computationally unbounded, i.e., under the information-theoretic setting, it is well known that even a single bit commitment is impossible when the channel available to Alice and Bob is noiseless. Noisy channels, however, offer the potential of non-zero commitment rate, and thus, are a valuable resource. We study information-theoretically secure commitment over noisy discrete memoryless channels (DMCs). The largest commitment throughput over noisy channels is called the commitment capacity or simply capacity. In this work, we completely characterize via a single-letter expression, the commitment capacity of DMCs under general cost constraints; this generalizes the previously known result in the absence of such cost constraints. We show that cost constrained commitment capacity of any given DMC can significantly differ from its unconstrained value. We also present a dual capacity characterization in terms of output distributions. Interestingly, we show that every input distribution achieving the capacity results in the same output distribution; the latter is the unique optimizer of our dual capacity expression.
2021 National Conference on Communications (NCC)
2022 IEEE Information Theory Workshop (ITW)
Луцький національний технічний університет, Луцьк, 2017
2022 14th International Conference on COMmunication Systems & NETworkS (COMSNETS)
We show that entirely information theoretic methods, based on von Neumann entropies and their pro... more We show that entirely information theoretic methods, based on von Neumann entropies and their properties, can be used to derive Singleton bounds on the performance of entanglement-assisted hybrid classical-quantum (EACQ) error correcting codes. Concretely we show that the triple-rate region of qubits, cbits and ebits of possible EACQ codes over alrbitrary alphabet sizes is contained in the quantum Shannon theoretic rate region of an associated memoryless erasure channel, which turns out to be a polytope. We show that a large part of this region is attainable by certain EACQ codes, whenever the local alphabet size (i.e. Hilbert space dimension) is large enough, in keeping with known facts about classical and quantum minimum distance separable (MDS) codes: in particular all of its extreme points and several important extremal lines.
Korean Music Education Society, 2021
2021 IEEE International Symposium on Information Theory (ISIT), 2021
We study the problem of commitment over channels under cost constraints. Commitment is a widely s... more We study the problem of commitment over channels under cost constraints. Commitment is a widely studied cryptographic primitive, where two mutually distrustful parties, say Alice and Bob, interact over two phases of a protocol, viz., commit phase followed by reveal phase, to achieve commitment on a bit string available to Alice. Commitment (over the string) is said to occur if (i) Alice commits to the string which remains securely hidden from Bob at the end of the commit phase involving Alice's transmission to Bob, and (ii) Alice reveals a string to Bob and Bob is able to successfully detect whether the string is the committed one or not. When Alice and Bob are computationally unbounded, i.e., under the information-theoretic setting, it is well known that even a single bit commitment is impossible when the channel available to Alice and Bob is noiseless. Noisy channels, however, offer the potential of non-zero commitment rate, and thus, are a valuable resource. We study information-theoretically secure commitment over noisy discrete memoryless channels (DMCs). The largest commitment throughput over noisy channels is called the commitment capacity or simply capacity. In this work, we completely characterize via a single-letter expression, the commitment capacity of DMCs under general cost constraints; this generalizes the previously known result in the absence of such cost constraints. We show that cost constrained commitment capacity of any given DMC can significantly differ from its unconstrained value. We also present a dual capacity characterization in terms of output distributions. Interestingly, we show that every input distribution achieving the capacity results in the same output distribution; the latter is the unique optimizer of our dual capacity expression.
IEEE Journal on Selected Areas in Communications, 2022
2021 IEEE Information Theory Workshop (ITW)
IEEE International Symposium on Information Theory (ISIT), 2021
We study the problem of commitment over channels under cost constraints. Commitment is a widely s... more We study the problem of commitment over channels under cost constraints. Commitment is a widely studied cryptographic primitive, where two mutually distrustful parties, say Alice and Bob, interact over two phases of a protocol, viz., commit phase followed by reveal phase, to achieve commitment on a bit string available to Alice. Commitment (over the string) is said to occur if (i) Alice commits to the string which remains securely hidden from Bob at the end of the commit phase involving Alice's transmission to Bob, and (ii) Alice reveals a string to Bob and Bob is able to successfully detect whether the string is the committed one or not. When Alice and Bob are computationally unbounded, i.e., under the information-theoretic setting, it is well known that even a single bit commitment is impossible when the channel available to Alice and Bob is noiseless. Noisy channels, however, offer the potential of non-zero commitment rate, and thus, are a valuable resource. We study information-theoretically secure commitment over noisy discrete memoryless channels (DMCs). The largest commitment throughput over noisy channels is called the commitment capacity or simply capacity. In this work, we completely characterize via a single-letter expression, the commitment capacity of DMCs under general cost constraints; this generalizes the previously known result in the absence of such cost constraints. We show that cost constrained commitment capacity of any given DMC can significantly differ from its unconstrained value. We also present a dual capacity characterization in terms of output distributions. Interestingly, we show that every input distribution achieving the capacity results in the same output distribution; the latter is the unique optimizer of our dual capacity expression.
2021 National Conference on Communications (NCC)