Condensin restructures chromosomes in preparation for meiotic divisions (original) (raw)
Abstract
The production of haploid gametes from diploid germ cells requires two rounds of meiotic chromosome segregation after one round of replication. Accurate meiotic chromosome segregation involves the remodeling of each pair of homologous chromosomes around the site of crossover into a highly condensed and ordered structure. We showed that condensin, the protein complex needed for mitotic chromosome compaction, restructures chromosomes during meiosis in Caenorhabditis elegans. In particular, condensin promotes both meiotic chromosome condensation after crossover recombination and the remodeling of sister chromatids. Condensin helps resolve cohesin-independent linkages between sister chromatids and alleviates recombination-independent linkages between homologues. The safeguarding of chromosome resolution by condensin permits chromosome segregation and is crucial for the formation of discrete, individualized bivalent chromosomes.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
For improved accessibility of PDF content, download the file to your device.