Joaquim Barros | Faculdade de Engenharia da Universidade do Porto (original) (raw)
Related Authors
University of Applied Sciences and Arts Western Switzerland
Uploads
Papers by Joaquim Barros
Engineering Structures, 2013
Experimental research has demonstrated the excellent performance of the near surface mounted (NSM... more Experimental research has demonstrated the excellent performance of the near surface mounted (NSM) technique with carbon fibre reinforced polymer (CFRP) laminates for the shear strengthening of reinforced concrete (RC) beams. This paper presents a finite element analysis to evaluate the behaviour of RC beams shear strengthened with NSM CFRP laminates. To predict correctly the deformational and the cracking behaviour of RC elements failing in shear using a smeared crack approach, the strategy adopted to simulate the crack shear stress transfer is crucial. For this purpose, a strategy for modelling the fracture mode II was implemented in a smeared crack model already existing in the FEM-based computer program, FEMIX. This strategy is mainly based on a softening shear stress-shear strain diagram adopted for modelling the crack shear stress transfer. To assess the predictive performance of the developed model, the experimental tests carried out with a series of T cross section RC beams shear strengthened according to the NSM technique by using CFRP laminates were simulated. In this series of beams, three different percentages of CFRP laminates and, for each CFRP percentage, three inclinations for the laminates were tested: 90º, 60º and 45º. By using the properties obtained from the experimental program for the characterization of the relevant properties of the intervening materials, and deriving from inverse analysis the data for the crack shear softening diagram, the simulations carried out have fitted with high accuracy the deformational and cracking behaviour of the 2 tested beams, as well as the strain fields in the reinforcements. The constitutive model is briefly described, and the simulations are presented and analysed.
Advances in Structural Engineering, 2011
Near surface mounted (NSM) technique has proved to be a very effective technique for the flexural... more Near surface mounted (NSM) technique has proved to be a very effective technique for the flexural strengthening of RC beams. Due to the relatively small thickness of the concrete cover that several beams present, cutting the bottom arm of steel stirrups for the installation of NSM laminates might be a possible strategy, whose implications on the beam's load carrying capacity need to be assessed. When steel stirrups are cut, however, the shear resistance can be a concern. This also happens when a strengthening intervention is carried out to increase the flexural resistance of a beam, since in certain cases it is also necessary to increase the shear resistance in order to avoid the occurrence of brittle shear failure. The present work assesses the effectiveness of a technique that aims to increase both the flexural and shear resistance of RC beams that have the bottom arm of the steel stirrups cut for the application of NSM laminates. This assessment is performed by experimental a...
Engineering Structures, 2013
Experimental research has demonstrated the excellent performance of the near surface mounted (NSM... more Experimental research has demonstrated the excellent performance of the near surface mounted (NSM) technique with carbon fibre reinforced polymer (CFRP) laminates for the shear strengthening of reinforced concrete (RC) beams. This paper presents a finite element analysis to evaluate the behaviour of RC beams shear strengthened with NSM CFRP laminates. To predict correctly the deformational and the cracking behaviour of RC elements failing in shear using a smeared crack approach, the strategy adopted to simulate the crack shear stress transfer is crucial. For this purpose, a strategy for modelling the fracture mode II was implemented in a smeared crack model already existing in the FEM-based computer program, FEMIX. This strategy is mainly based on a softening shear stress-shear strain diagram adopted for modelling the crack shear stress transfer. To assess the predictive performance of the developed model, the experimental tests carried out with a series of T cross section RC beams shear strengthened according to the NSM technique by using CFRP laminates were simulated. In this series of beams, three different percentages of CFRP laminates and, for each CFRP percentage, three inclinations for the laminates were tested: 90º, 60º and 45º. By using the properties obtained from the experimental program for the characterization of the relevant properties of the intervening materials, and deriving from inverse analysis the data for the crack shear softening diagram, the simulations carried out have fitted with high accuracy the deformational and cracking behaviour of the 2 tested beams, as well as the strain fields in the reinforcements. The constitutive model is briefly described, and the simulations are presented and analysed.
Advances in Structural Engineering, 2011
Near surface mounted (NSM) technique has proved to be a very effective technique for the flexural... more Near surface mounted (NSM) technique has proved to be a very effective technique for the flexural strengthening of RC beams. Due to the relatively small thickness of the concrete cover that several beams present, cutting the bottom arm of steel stirrups for the installation of NSM laminates might be a possible strategy, whose implications on the beam's load carrying capacity need to be assessed. When steel stirrups are cut, however, the shear resistance can be a concern. This also happens when a strengthening intervention is carried out to increase the flexural resistance of a beam, since in certain cases it is also necessary to increase the shear resistance in order to avoid the occurrence of brittle shear failure. The present work assesses the effectiveness of a technique that aims to increase both the flexural and shear resistance of RC beams that have the bottom arm of the steel stirrups cut for the application of NSM laminates. This assessment is performed by experimental a...