Emily Lemmon | Florida State University (original) (raw)
Papers by Emily Lemmon
Gene duplication is the primary mechanism leading to new genes and phenotypic novelty, but the pr... more Gene duplication is the primary mechanism leading to new genes and phenotypic novelty, but the proximate evolutionary processes underlying gene family origin, maintenance, and expansion are poorly understood. Although sub-and neofunctionalization provide clear long-term advantages, selection does not act with foresight, and unless a redundant gene copy provides an immediate fitness advantage, the copy will most likely be lost. Many models for the evolution of genes immediately following duplication have been proposed, but the robustness and applicability of these models is unclear because of the lack of data at the population-level. We used qPCR, protein expression data, genome sequencing, and hybrid enrichment to test three competing models that differ in whether selection favoring the spread of duplicates acts primarily on expression level or sequence diversity for specific toxin-encoding loci in the eastern diamondback rattlesnake (Crotalus adamanteus). We sampled 178 individuals and identified significant inter-and intrapopulation variation in copy number, demonstrated that copy number was significantly and positively correlated with protein expression, and found little to no sequence variation across paralogs in all populations. Collectively, these results demonstrate that selection for increased expression, not sequence diversity, was the proximate evolutionary process underlying gene family origin and expansion, providing data needed to resolve the debate over which evolutionary processes govern the fates of gene copies immediately following duplication.
Although reconstruction of the phylogeny of living birds has progressed tremendously in the last ... more Although reconstruction of the phylogeny of living birds has progressed tremendously in the last decade, the evolutionary history of Neoaves-a clade that encompasses nearly all living bird speciesremains the greatest unresolved challenge in dinosaur systematics. Here we investigate avian phylogeny with an unprecedented scale of data: .390,000 bases of genomic sequence data from each of 198 species of living birds, representing all major avian lineages, and two crocodilian outgroups. Sequence data were collected using anchored hybrid enrichment, yielding 259 nuclear loci with an average length of 1,523 bases for a total data set of over 7.8 3 10 7 bases. Bayesian and maximum likelihood analyses yielded highly supported and nearly identical phylogenetic trees for all major avian lineages. Five major clades form successive sister groups to the rest of Neoaves: (1) a clade including nightjars, other caprimulgiforms, swifts, and hummingbirds; (2) a clade uniting cuckoos, bustards, and turacos with pigeons, mesites, and sandgrouse; (3) cranes and their relatives; (4) a comprehensive waterbird clade, including all diving, wading, and shorebirds; and (5) a comprehensive landbird clade with the enigmatic hoatzin (Opisthocomus hoazin) as the sister group to the rest. Neither of the two main, recently proposed Neoavian clades-Columbea and Passerea 1were supported as monophyletic. The results of our divergence time analyses are congruent with the palaeontological record, supporting a major radiation of crown birds in the wake of the Cretaceous-Palaeogene (K-Pg) mass extinction.
Systematic Biology, 2008
Due to lack of an adequate statistical framework, biologists studying phylogeography are abandoni... more Due to lack of an adequate statistical framework, biologists studying phylogeography are abandoning traditional methods of estimating phylogeographic history in favor of statistical methods designed to test a priori hypotheses. These new methods may, however, have limited descriptive utility. Here, we develop a new statistical framework that can be used to both test a priori hypotheses and estimate phylogeographic history of a gene (and the statistical confidence in that history) in the absence of such hypotheses. The statistical approach concentrates on estimation of geographic locations of the ancestors of a set of sampled organisms. Assuming a spatially explicit random walk model of migration, we derive an equation describing the likelihood of the geographic coordinates of the individuals represented by internal nodes on a tree (the parameters of interest) and the mean per-generation dispersal distance (which can be estimated as a nuisance parameter), given the geographic coordinates of the individuals represented by tips on the tree (topology and branch lengths are assumed to be known). Using a maximum likelihood approach, which is implemented in the new program PhyloMapper, we apply this statistical framework to a 246-taxon mitochondrial genealogy of North American chorus frogs, focusing in detail on one of these species. We demonstrate three lines of evidence for recent northward expansion of the mitochondrion of the coastal clade of Pseudacris feriarum: higher per-generation dispersal distance in the recently colonized region, a noncentral ancestral location, and directional migration. After illustrating one method of accommodating phylogenetic uncertainty, we conclude by discussing how extensions of this framework could function to incorporate a priori ecological and geological information into phylogeographic analyses. [Maximum likelihood; phylogeography; PhyloMapper; Pseudacris; random walk; statistical phylogeography; landscape.] 2007). Although these new approaches have brought statistical rigor to phylogeography, their scope may be limited to systems in which simple a priori hypotheses 544 by guest on
Toxicon, 2011
Despite causing considerable human mortality and morbidity, animal toxins represent a valuable so... more Despite causing considerable human mortality and morbidity, animal toxins represent a valuable source of pharmacologically active macromolecules, a unique system for studying molecular adaptation, and a powerful framework for examining structure-function relationships in proteins. Snake venoms are particularly useful in the latter regard as they consist primarily of a moderate number of proteins and peptides that have been found to belong to just a handful of protein families. As these proteins and peptides are produced in dedicated glands, transcriptome sequencing has proven to be an effective approach to identifying the expressed toxin genes. We generated a venom-gland transcriptome for the Eastern Diamondback Rattlesnake (Crotalus adamanteus) using Roche 454 sequencing technology. In the current work, we focus on transcripts encoding toxins. We identified 40 unique toxin transcripts, 30 of which have full-length coding sequences, and 10 have only partial coding sequences. These toxins account for 24% of the total sequencing reads. We found toxins from 11 previously described families of snake-venom toxins and have discovered two putative, previously undescribed toxin classes. The most diverse and highly expressed toxin classes in the C. adamanteus venom-gland transcriptome are the serine proteinases, metalloproteinases, and C-type lectins. The serine proteinases are the most abundant class, accounting for 35% of the toxin sequencing reads. Metalloproteinases are the most diverse; 11 different forms have been identified. Using our sequences and those available in public databases, we detected positive selection in seven of the eight toxin families for which sufficient sequences were available for the analysis. We find that the vast majority of the genes that contribute directly to this vertebrate trait show evidence for a role for positive selection in their evolutionary history.
Systematic Biology, 2009
Although an increasing number of phylogenetic data sets are incomplete, the effect of ambiguous d... more Although an increasing number of phylogenetic data sets are incomplete, the effect of ambiguous data on phylogenetic accuracy is not well understood. We use 4-taxon simulations to study the effects of ambiguous data (i.e., missing characters or gaps) in maximum likelihood (ML) and Bayesian frameworks. By introducing ambiguous data in a way that removes confounding factors, we provide the first clear understanding of 1 mechanism by which ambiguous data can mislead phylogenetic analyses. We find that in both ML and Bayesian frameworks, among-site rate variation can interact with ambiguous data to produce misleading estimates of topology and branch lengths. Furthermore, within a Bayesian framework, priors on branch lengths and rate heterogeneity parameters can exacerbate the effects of ambiguous data, resulting in strongly misleading bipartition posterior probabilities. The magnitude and direction of the ambiguous data bias are a function of the number and taxonomic distribution of ambiguous characters, the strength of topological support, and whether or not the model is correctly specified. The results of this study have major implications for all analyses that rely on accurate estimates of topology or branch lengths, including divergence time estimation, ancestral state reconstruction, tree-dependent comparative methods, rate variation analysis, phylogenetic hypothesis testing, and phylogeographic analysis.
Systematic Biology, 2004
We studied the importance of proper model assumption in the context of Bayesian phylogenetics by ... more We studied the importance of proper model assumption in the context of Bayesian phylogenetics by examining >5,000 Bayesian analyses and six nested models of nucleotide substitution. Model misspecification can strongly bias bipartition posterior probability estimates. These biases were most pronounced when rate heterogeneity was ignored. The type of bias seen at a particular bipartition appeared to be strongly influenced by the lengths of the branches surrounding that bipartition. In the Felsenstein zone, posterior probability estimates of bipartitions were biased when the assumed model was underparameterized but were unbiased when the assumed model was overparameterized. For the inverse Felsenstein zone, however, both underparameterization and overparameterization led to biased bipartition posterior probabilities, although the bias caused by overparameterization was less pronounced and disappeared with increased sequence length. Model parameter estimates were also affected by model misspecification. Underparameterization caused a bias in some parameter estimates, such as branch lengths and the gamma shape parameter, whereas overparameterization caused a decrease in the precision of some parameter estimates. We caution researchers to assure that the most appropriate model is assumed by employing both a priori model choice methods and a posteriori model adequacy tests. [Bayesian phylogenetic inference; convergence; Markov chain Monte Carlo; maximum likelihood; model choice; posterior probability.]
Systematic Biology, 2010
A surprising number of recent Bayesian phylogenetic analyses contain branch-length estimates that... more A surprising number of recent Bayesian phylogenetic analyses contain branch-length estimates that are several orders of magnitude longer than corresponding maximum-likelihood estimates. The levels of divergence implied by such branch lengths are unreasonable for studies using biological data and are known to be false for studies using simulated data. We conducted additional Bayesian analyses and studied approximate-posterior surfaces to investigate the causes underlying these large errors. We manipulated the starting parameter values of the Markov chain Monte Carlo (MCMC) analyses, the moves used by the MCMC analyses, and the prior-probability distribution on branch lengths. We demonstrate that inaccurate branch-length estimates result from either 1) poor mixing of MCMC chains or 2) posterior distributions with excessive weight at long tree lengths. Both effects are caused by a rapid increase in the volume of branch-length space as branches become longer. In the former case, both an MCMC move that scales all branch lengths in the tree simultaneously and the use of overdispersed starting branch lengths allow the chain to accurately sample the posterior distribution and should be used in Bayesian analyses of phylogeny. In the latter case, branch-length priors can have strong effects on resulting inferences and should be carefully chosen to reflect biological expectations. We provide a formula to calculate an exponential rate parameter for the branch-length prior that should eliminate inference of biased branch lengths in many cases. In any phylogenetic analysis, the biological plausibility of branch-length output must be carefully considered. [Bayesian; branch length; Markov chain Monte Carlo; parameter space; phylogeny; posterior; prior.] A Brief Overview of Markov Chain Monte Carlo in Phylogenetics Understanding the potential problems with these analyses requires a basic background in Markov chain 145 by Alan
Evolution, 2007
North American flora and fauna. Few studies, however, have rigorously tested hypotheses regarding... more North American flora and fauna. Few studies, however, have rigorously tested hypotheses regarding the specific factors driving divergence of taxa. Here, we test explicit speciation hypotheses by correlating geologic events with divergence times among species in the continentally distributed trilling chorus frogs (Pseudacris). In particular, we ask whether marine inundation of the Mississippi Embayment, uplift of the Appalachian Mountains, or modification of the ancient Teays-Mahomet River system contributed to speciation. To examine the plausibility of ancient rivers causing divergence, we tested whether modern river systems inhibit gene flow. Additionally, we compared the effects of Quaternary climatic factors (glaciation and aridification) on levels of genetic variation. Divergence time estimates using penalized likelihood and coalescent approaches indicate that the major lineages of chorus frogs diversified during the Tertiary, and also exclude Quaternary climate change as a factor in speciation of chorus frogs.
Molecular Phylogenetics and Evolution, 2007
Although the trilling chorus frogs (subclade within Pseudacris: Hylidae) have been important in s... more Although the trilling chorus frogs (subclade within Pseudacris: Hylidae) have been important in studies of speciation, continental patterns of genetic diversity within and among species have not been elucidated. As a result, this North American clade has been the subject of substantial taxonomic debate. In this study, we examined the phylogenetic relationships among the trilling Pseudacris and tested previously hypothesized scenarios for speciation using 2.4 kb of mitochondrial 12S and 16S rRNA genes from 253 populations. Bayesian phylogenetic analyses, in combination with published morphological and behavioral data, support recognition of at least nine species, including an undescribed species from the south-central United States. Evidence is presented for substantial geographic subdivision within P. brachyphona (northern and southern clades) and P. feriarum (coastal and inland clades). Discordance between morphology/behavior and molecular data in several individuals suggests occasional hybridization between sympatric species. These results require major revision of range limits for several taxa, in particular, P. maculata, P. triseriata, and P. feriarum. Hypothesis tests using parametric bootstrapping strongly reject previously proposed scenarios for speciation in the group. The tests also support recognition of the geographically restricted taxon P. kalmi as a distinct species. Results of this study provide both a firm phylogenetic basis for future studies of speciation in the trilling Pseudacris and a taxonomic framework for conservation efforts.
Evolution, 2010
Maladaptive hybridization is hypothesized to be an important force driving the evolution of repro... more Maladaptive hybridization is hypothesized to be an important force driving the evolution of reproductive isolation between closely related species. Because the magnitude and direction of selection can vary across a life cycle, an accurate understanding of the ubiquity of reinforcement requires fitness to be estimated across the life cycle, but the literature is surprisingly depauperate of such studies. We present fitness estimates of laboratory-raised hybrids between the chorus frogs Pseudacris feriarum and Pseudacris nigrita—two species that have undergone reproductive character displacement where they come into secondary contact. By studying viability, mating success, and fertility across the life cycle, we find strong support for reinforcement as the force driving displacement in this system. Specifically, we find hybrid fitness is reduced by 44%. This reduction results from both sexual selection against hybrid males and natural selection on male fertility, but not viability selection. Sexual selection against hybrid males is four times stronger than natural selection. Hybrid female fitness is not reduced, however, suggesting that Haldane's rule may be operating in this system if males are heterogametic. We also found higher variation in hybrid male fertilization success relative to P. feriarum males, suggesting that the hybrid incompatibility genes are polymorphic within one or both of the parent species.
Evolution, 2009
Theoretical models suggest that geographic overlap with different heterospecific assemblages can ... more Theoretical models suggest that geographic overlap with different heterospecific assemblages can promote divergence of mate recognition systems among conspecific populations. Divergence occurs when different traits undergo reproductive character displacement across populations within a contact zone. Here, I tested this hypothesis by assessing patterns of acoustic signal divergence in two-and three-species assemblages of chorus frogs (Pseudacris), focusing in particular on P. feriarum and P. nigrita.
Gene duplication is the primary mechanism leading to new genes and phenotypic novelty, but the pr... more Gene duplication is the primary mechanism leading to new genes and phenotypic novelty, but the proximate evolutionary processes underlying gene family origin, maintenance, and expansion are poorly understood. Although sub-and neofunctionalization provide clear long-term advantages, selection does not act with foresight, and unless a redundant gene copy provides an immediate fitness advantage, the copy will most likely be lost. Many models for the evolution of genes immediately following duplication have been proposed, but the robustness and applicability of these models is unclear because of the lack of data at the population-level. We used qPCR, protein expression data, genome sequencing, and hybrid enrichment to test three competing models that differ in whether selection favoring the spread of duplicates acts primarily on expression level or sequence diversity for specific toxin-encoding loci in the eastern diamondback rattlesnake (Crotalus adamanteus). We sampled 178 individuals and identified significant inter-and intrapopulation variation in copy number, demonstrated that copy number was significantly and positively correlated with protein expression, and found little to no sequence variation across paralogs in all populations. Collectively, these results demonstrate that selection for increased expression, not sequence diversity, was the proximate evolutionary process underlying gene family origin and expansion, providing data needed to resolve the debate over which evolutionary processes govern the fates of gene copies immediately following duplication.
Although reconstruction of the phylogeny of living birds has progressed tremendously in the last ... more Although reconstruction of the phylogeny of living birds has progressed tremendously in the last decade, the evolutionary history of Neoaves-a clade that encompasses nearly all living bird speciesremains the greatest unresolved challenge in dinosaur systematics. Here we investigate avian phylogeny with an unprecedented scale of data: .390,000 bases of genomic sequence data from each of 198 species of living birds, representing all major avian lineages, and two crocodilian outgroups. Sequence data were collected using anchored hybrid enrichment, yielding 259 nuclear loci with an average length of 1,523 bases for a total data set of over 7.8 3 10 7 bases. Bayesian and maximum likelihood analyses yielded highly supported and nearly identical phylogenetic trees for all major avian lineages. Five major clades form successive sister groups to the rest of Neoaves: (1) a clade including nightjars, other caprimulgiforms, swifts, and hummingbirds; (2) a clade uniting cuckoos, bustards, and turacos with pigeons, mesites, and sandgrouse; (3) cranes and their relatives; (4) a comprehensive waterbird clade, including all diving, wading, and shorebirds; and (5) a comprehensive landbird clade with the enigmatic hoatzin (Opisthocomus hoazin) as the sister group to the rest. Neither of the two main, recently proposed Neoavian clades-Columbea and Passerea 1were supported as monophyletic. The results of our divergence time analyses are congruent with the palaeontological record, supporting a major radiation of crown birds in the wake of the Cretaceous-Palaeogene (K-Pg) mass extinction.
Systematic Biology, 2008
Due to lack of an adequate statistical framework, biologists studying phylogeography are abandoni... more Due to lack of an adequate statistical framework, biologists studying phylogeography are abandoning traditional methods of estimating phylogeographic history in favor of statistical methods designed to test a priori hypotheses. These new methods may, however, have limited descriptive utility. Here, we develop a new statistical framework that can be used to both test a priori hypotheses and estimate phylogeographic history of a gene (and the statistical confidence in that history) in the absence of such hypotheses. The statistical approach concentrates on estimation of geographic locations of the ancestors of a set of sampled organisms. Assuming a spatially explicit random walk model of migration, we derive an equation describing the likelihood of the geographic coordinates of the individuals represented by internal nodes on a tree (the parameters of interest) and the mean per-generation dispersal distance (which can be estimated as a nuisance parameter), given the geographic coordinates of the individuals represented by tips on the tree (topology and branch lengths are assumed to be known). Using a maximum likelihood approach, which is implemented in the new program PhyloMapper, we apply this statistical framework to a 246-taxon mitochondrial genealogy of North American chorus frogs, focusing in detail on one of these species. We demonstrate three lines of evidence for recent northward expansion of the mitochondrion of the coastal clade of Pseudacris feriarum: higher per-generation dispersal distance in the recently colonized region, a noncentral ancestral location, and directional migration. After illustrating one method of accommodating phylogenetic uncertainty, we conclude by discussing how extensions of this framework could function to incorporate a priori ecological and geological information into phylogeographic analyses. [Maximum likelihood; phylogeography; PhyloMapper; Pseudacris; random walk; statistical phylogeography; landscape.] 2007). Although these new approaches have brought statistical rigor to phylogeography, their scope may be limited to systems in which simple a priori hypotheses 544 by guest on
Toxicon, 2011
Despite causing considerable human mortality and morbidity, animal toxins represent a valuable so... more Despite causing considerable human mortality and morbidity, animal toxins represent a valuable source of pharmacologically active macromolecules, a unique system for studying molecular adaptation, and a powerful framework for examining structure-function relationships in proteins. Snake venoms are particularly useful in the latter regard as they consist primarily of a moderate number of proteins and peptides that have been found to belong to just a handful of protein families. As these proteins and peptides are produced in dedicated glands, transcriptome sequencing has proven to be an effective approach to identifying the expressed toxin genes. We generated a venom-gland transcriptome for the Eastern Diamondback Rattlesnake (Crotalus adamanteus) using Roche 454 sequencing technology. In the current work, we focus on transcripts encoding toxins. We identified 40 unique toxin transcripts, 30 of which have full-length coding sequences, and 10 have only partial coding sequences. These toxins account for 24% of the total sequencing reads. We found toxins from 11 previously described families of snake-venom toxins and have discovered two putative, previously undescribed toxin classes. The most diverse and highly expressed toxin classes in the C. adamanteus venom-gland transcriptome are the serine proteinases, metalloproteinases, and C-type lectins. The serine proteinases are the most abundant class, accounting for 35% of the toxin sequencing reads. Metalloproteinases are the most diverse; 11 different forms have been identified. Using our sequences and those available in public databases, we detected positive selection in seven of the eight toxin families for which sufficient sequences were available for the analysis. We find that the vast majority of the genes that contribute directly to this vertebrate trait show evidence for a role for positive selection in their evolutionary history.
Systematic Biology, 2009
Although an increasing number of phylogenetic data sets are incomplete, the effect of ambiguous d... more Although an increasing number of phylogenetic data sets are incomplete, the effect of ambiguous data on phylogenetic accuracy is not well understood. We use 4-taxon simulations to study the effects of ambiguous data (i.e., missing characters or gaps) in maximum likelihood (ML) and Bayesian frameworks. By introducing ambiguous data in a way that removes confounding factors, we provide the first clear understanding of 1 mechanism by which ambiguous data can mislead phylogenetic analyses. We find that in both ML and Bayesian frameworks, among-site rate variation can interact with ambiguous data to produce misleading estimates of topology and branch lengths. Furthermore, within a Bayesian framework, priors on branch lengths and rate heterogeneity parameters can exacerbate the effects of ambiguous data, resulting in strongly misleading bipartition posterior probabilities. The magnitude and direction of the ambiguous data bias are a function of the number and taxonomic distribution of ambiguous characters, the strength of topological support, and whether or not the model is correctly specified. The results of this study have major implications for all analyses that rely on accurate estimates of topology or branch lengths, including divergence time estimation, ancestral state reconstruction, tree-dependent comparative methods, rate variation analysis, phylogenetic hypothesis testing, and phylogeographic analysis.
Systematic Biology, 2004
We studied the importance of proper model assumption in the context of Bayesian phylogenetics by ... more We studied the importance of proper model assumption in the context of Bayesian phylogenetics by examining >5,000 Bayesian analyses and six nested models of nucleotide substitution. Model misspecification can strongly bias bipartition posterior probability estimates. These biases were most pronounced when rate heterogeneity was ignored. The type of bias seen at a particular bipartition appeared to be strongly influenced by the lengths of the branches surrounding that bipartition. In the Felsenstein zone, posterior probability estimates of bipartitions were biased when the assumed model was underparameterized but were unbiased when the assumed model was overparameterized. For the inverse Felsenstein zone, however, both underparameterization and overparameterization led to biased bipartition posterior probabilities, although the bias caused by overparameterization was less pronounced and disappeared with increased sequence length. Model parameter estimates were also affected by model misspecification. Underparameterization caused a bias in some parameter estimates, such as branch lengths and the gamma shape parameter, whereas overparameterization caused a decrease in the precision of some parameter estimates. We caution researchers to assure that the most appropriate model is assumed by employing both a priori model choice methods and a posteriori model adequacy tests. [Bayesian phylogenetic inference; convergence; Markov chain Monte Carlo; maximum likelihood; model choice; posterior probability.]
Systematic Biology, 2010
A surprising number of recent Bayesian phylogenetic analyses contain branch-length estimates that... more A surprising number of recent Bayesian phylogenetic analyses contain branch-length estimates that are several orders of magnitude longer than corresponding maximum-likelihood estimates. The levels of divergence implied by such branch lengths are unreasonable for studies using biological data and are known to be false for studies using simulated data. We conducted additional Bayesian analyses and studied approximate-posterior surfaces to investigate the causes underlying these large errors. We manipulated the starting parameter values of the Markov chain Monte Carlo (MCMC) analyses, the moves used by the MCMC analyses, and the prior-probability distribution on branch lengths. We demonstrate that inaccurate branch-length estimates result from either 1) poor mixing of MCMC chains or 2) posterior distributions with excessive weight at long tree lengths. Both effects are caused by a rapid increase in the volume of branch-length space as branches become longer. In the former case, both an MCMC move that scales all branch lengths in the tree simultaneously and the use of overdispersed starting branch lengths allow the chain to accurately sample the posterior distribution and should be used in Bayesian analyses of phylogeny. In the latter case, branch-length priors can have strong effects on resulting inferences and should be carefully chosen to reflect biological expectations. We provide a formula to calculate an exponential rate parameter for the branch-length prior that should eliminate inference of biased branch lengths in many cases. In any phylogenetic analysis, the biological plausibility of branch-length output must be carefully considered. [Bayesian; branch length; Markov chain Monte Carlo; parameter space; phylogeny; posterior; prior.] A Brief Overview of Markov Chain Monte Carlo in Phylogenetics Understanding the potential problems with these analyses requires a basic background in Markov chain 145 by Alan
Evolution, 2007
North American flora and fauna. Few studies, however, have rigorously tested hypotheses regarding... more North American flora and fauna. Few studies, however, have rigorously tested hypotheses regarding the specific factors driving divergence of taxa. Here, we test explicit speciation hypotheses by correlating geologic events with divergence times among species in the continentally distributed trilling chorus frogs (Pseudacris). In particular, we ask whether marine inundation of the Mississippi Embayment, uplift of the Appalachian Mountains, or modification of the ancient Teays-Mahomet River system contributed to speciation. To examine the plausibility of ancient rivers causing divergence, we tested whether modern river systems inhibit gene flow. Additionally, we compared the effects of Quaternary climatic factors (glaciation and aridification) on levels of genetic variation. Divergence time estimates using penalized likelihood and coalescent approaches indicate that the major lineages of chorus frogs diversified during the Tertiary, and also exclude Quaternary climate change as a factor in speciation of chorus frogs.
Molecular Phylogenetics and Evolution, 2007
Although the trilling chorus frogs (subclade within Pseudacris: Hylidae) have been important in s... more Although the trilling chorus frogs (subclade within Pseudacris: Hylidae) have been important in studies of speciation, continental patterns of genetic diversity within and among species have not been elucidated. As a result, this North American clade has been the subject of substantial taxonomic debate. In this study, we examined the phylogenetic relationships among the trilling Pseudacris and tested previously hypothesized scenarios for speciation using 2.4 kb of mitochondrial 12S and 16S rRNA genes from 253 populations. Bayesian phylogenetic analyses, in combination with published morphological and behavioral data, support recognition of at least nine species, including an undescribed species from the south-central United States. Evidence is presented for substantial geographic subdivision within P. brachyphona (northern and southern clades) and P. feriarum (coastal and inland clades). Discordance between morphology/behavior and molecular data in several individuals suggests occasional hybridization between sympatric species. These results require major revision of range limits for several taxa, in particular, P. maculata, P. triseriata, and P. feriarum. Hypothesis tests using parametric bootstrapping strongly reject previously proposed scenarios for speciation in the group. The tests also support recognition of the geographically restricted taxon P. kalmi as a distinct species. Results of this study provide both a firm phylogenetic basis for future studies of speciation in the trilling Pseudacris and a taxonomic framework for conservation efforts.
Evolution, 2010
Maladaptive hybridization is hypothesized to be an important force driving the evolution of repro... more Maladaptive hybridization is hypothesized to be an important force driving the evolution of reproductive isolation between closely related species. Because the magnitude and direction of selection can vary across a life cycle, an accurate understanding of the ubiquity of reinforcement requires fitness to be estimated across the life cycle, but the literature is surprisingly depauperate of such studies. We present fitness estimates of laboratory-raised hybrids between the chorus frogs Pseudacris feriarum and Pseudacris nigrita—two species that have undergone reproductive character displacement where they come into secondary contact. By studying viability, mating success, and fertility across the life cycle, we find strong support for reinforcement as the force driving displacement in this system. Specifically, we find hybrid fitness is reduced by 44%. This reduction results from both sexual selection against hybrid males and natural selection on male fertility, but not viability selection. Sexual selection against hybrid males is four times stronger than natural selection. Hybrid female fitness is not reduced, however, suggesting that Haldane's rule may be operating in this system if males are heterogametic. We also found higher variation in hybrid male fertilization success relative to P. feriarum males, suggesting that the hybrid incompatibility genes are polymorphic within one or both of the parent species.
Evolution, 2009
Theoretical models suggest that geographic overlap with different heterospecific assemblages can ... more Theoretical models suggest that geographic overlap with different heterospecific assemblages can promote divergence of mate recognition systems among conspecific populations. Divergence occurs when different traits undergo reproductive character displacement across populations within a contact zone. Here, I tested this hypothesis by assessing patterns of acoustic signal divergence in two-and three-species assemblages of chorus frogs (Pseudacris), focusing in particular on P. feriarum and P. nigrita.