Eloy Roura | Universitat de Girona (original) (raw)

Papers by Eloy Roura

Research paper thumbnail of Cortical fractal dimension predicts disability worsening in Multiple Sclerosis patients

NeuroImage: Clinical

Graphical abstract

Research paper thumbnail of Objective Evaluation of Multiple Sclerosis Lesion Segmentation using a Data Management and Processing Infrastructure

Scientific Reports, Sep 12, 2018

Research paper thumbnail of Automatic quantification of CT features in Acute Traumatic Brain Injury

Traumatic brain injury is a complex and diverse medical condition with a high frequency of intrac... more Traumatic brain injury is a complex and diverse medical condition with a high frequency of intracranial abnormalities. These can typically be visualized on a computed tomography (CT) scan, which provides important information for further patient management, such as the need for operative intervention. In order to quantify the extent of acute intracranial lesions and associated secondary injuries, such as midline shift and cisternal compression, visual assessment of CT images has limitations, including observer variability and lack of quantitative interpretation. Automated image analysis can quantify the extent of intracranial abnormalities and provide added value in routine clinical practice. In this article, we present icobrain, a fully automated method that reliably computes acute intracranial lesions volume based on deep learning, cistern volume, and midline shift on the noncontrast CT image of a patient. The accuracy of our method is evaluated on a subset of the multi-center data set from the CENTER-TBI (Collaborative European Neurotrauma Effectiveness Research in Traumatic Brain Injury) study for which expert annotations were used as a reference. Median volume differences between expert assessments and icobrain are 0.07 mL for acute intracranial lesions and-0.01 mL for cistern segmentation. Correlation between expert assessments and icobrain is 0.91 for volume of acute intracranial lesions and 0.94 for volume of the cisterns. For midline shift computations, median error is-0.22 mm, with a correlation of 0.93 with expert assessments.

Research paper thumbnail of Automated Detection of Lupus White Matter Lesions in MRI

Frontiers in Neuroinformatics, 2016

Brain magnetic resonance imaging provides detailed information which can be used to detect and se... more Brain magnetic resonance imaging provides detailed information which can be used to detect and segment white matter lesions (WML). In this work we propose an approach to automatically segment WML in Lupus patients by using T1w and fluid-attenuated inversion recovery (FLAIR) images. Lupus WML appear as small focal abnormal tissue observed as hyperintensities in the FLAIR images. The quantification of these WML is a key factor for the stratification of lupus patients and therefore both lesion detection and segmentation play an important role. In our approach, the T1w image is first used to classify the three main tissues of the brain, white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF), while the FLAIR image is then used to detect focal WML as outliers of its GM intensity distribution. A set of post-processing steps based on lesion size, tissue neighborhood, and location are used to refine the lesion candidates. The proposal is evaluated on 20 patients, presenting quali...

Research paper thumbnail of Automated tissue segmentation of MR brain images in the presence of white matter lesions

Medical image analysis, Jan 30, 2016

Over the last few years, the increasing interest in brain tissue volume measurements on clinical ... more Over the last few years, the increasing interest in brain tissue volume measurements on clinical settings has led to the development of a wide number of automated tissue segmentation methods. However, white matter lesions are known to reduce the performance of automated tissue segmentation methods, which requires manual annotation of the lesions and refilling them before segmentation, which is tedious and time-consuming. Here, we propose a new, fully automated T1-w/FLAIR tissue segmentation approach designed to deal with images in the presence of WM lesions. This approach integrates a robust partial volume tissue segmentation with WM outlier rejection and filling, combining intensity and probabilistic and morphological prior maps. We evaluate the performance of this method on the MRBrainS13 tissue segmentation challenge database, which contains images with vascular WM lesions, and also on a set of Multiple Sclerosis (MS) patient images. On both databases, we validate the performance...

Research paper thumbnail of Improving automated multiple sclerosis lesion segmentation with a cascaded 3D convolutional neural network approach

NeuroImage, Jan 19, 2017

In this paper, we present a novel automated method for White Matter (WM) lesion segmentation of M... more In this paper, we present a novel automated method for White Matter (WM) lesion segmentation of Multiple Sclerosis (MS) patient images. Our approach is based on a cascade of two 3D patch-wise convolutional neural networks (CNN). The first network is trained to be more sensitive revealing possible candidate lesion voxels while the second network is trained to reduce the number of misclassified voxels coming from the first network. This cascaded CNN architecture tends to learn well from a small (n≤35) set of labeled data of the same MRI contrast, which can be very interesting in practice, given the difficulty to obtain manual label annotations and the large amount of available unlabeled Magnetic Resonance Imaging (MRI) data. We evaluate the accuracy of the proposed method on the public MS lesion segmentation challenge MICCAI2008 dataset, comparing it with respect to other state-of-the-art MS lesion segmentation tools. Furthermore, the proposed method is also evaluated on two private M...

Research paper thumbnail of An SPM12 extension for multiple sclerosis lesion segmentation

Medical Imaging 2016: Image Processing, 2016

Purpose: Magnetic resonance imaging is nowadays the hallmark to diagnose multiple sclerosis (MS),... more Purpose: Magnetic resonance imaging is nowadays the hallmark to diagnose multiple sclerosis (MS), characterized by white matter lesions. Several approaches have been recently presented to tackle the lesion segmentation problem, but none of them have been accepted as a standard tool in the daily clinical practice. In this work we present yet another tool able to automatically segment white matter lesions outperforming the current-state-of-the-art approaches. Methods: This work is an extension of Roura et al. [1], where external and platform dependent pre-processing libraries (brain extraction, noise reduction and intensity normalization) were required to achieve an optimal performance. Here we have updated and included all these required pre-processing steps into a single framework (SPM software). Therefore, there is no need of external tools to achieve the desired segmentation results. Besides, we have changed the working space from T1w to FLAIR, reducing interpolation errors produced in the registration process from FLAIR to T1w space. Finally a post-processing constraint based on shape and location has been added to reduce false positive detections. Results: The evaluation of the tool has been done on 24 MS patients. Qualitative and quantitative results are shown with both approaches in terms of lesion detection and segmentation. Conclusion: We have simplified both installation and implementation of the approach, providing a multiplatform tool 1 integrated into the SPM software, which relies only on using T1w and FLAIR images. We have reduced with this new version the computation time of the previous approach while maintaining the performance.

Research paper thumbnail of Quantifying brain tissue volume in multiple sclerosis with automated lesion segmentation and filling

NeuroImage. Clinical, 2015

Lesion filling has been successfully applied to reduce the effect of hypo-intense T1-w Multiple S... more Lesion filling has been successfully applied to reduce the effect of hypo-intense T1-w Multiple Sclerosis (MS) lesions on automatic brain tissue segmentation. However, a study of fully automated pipelines incorporating lesion segmentation and lesion filling on tissue volume analysis has not yet been performed. Here, we analyzed the % of error introduced by automating the lesion segmentation and filling processes in the tissue segmentation of 70 clinically isolated syndrome patient images. First of all, images were processed using the LST and SLS toolkits with different pipeline combinations that differed in either automated or manual lesion segmentation, and lesion filling or masking out lesions. Then, images processed following each of the pipelines were segmented into gray matter (GM) and white matter (WM) using SPM8, and compared with the same images where expert lesion annotations were filled before segmentation. Our results showed that fully automated lesion segmentation and fi...

Research paper thumbnail of Multi-channel registration of fractional anisotropy and T1-weighted images in the presence of atrophy: application to multiple sclerosis

Functional neurology, Jan 15, 2015

Co-registration of structural T1-weighted (T1w) scans and diffusion tensor imaging (DTI)-derived ... more Co-registration of structural T1-weighted (T1w) scans and diffusion tensor imaging (DTI)-derived fractional anisotropy (FA) maps to a common space is of particular interest in neuroimaging, as T1w scans can be used for brain segmentation while DTI can provide microstructural tissue information. While the effect of lesions on registration has been tackled and solutions are available, the issue of atrophy is still open to discussion. Multi-channel (MC) registration algorithms have the advantage of maintaining anatomical correspondence between different contrast images after registration to any target space. In this work, we test the performance of an MC registration approach applied to T1w and FA data using simulated brain atrophy images. Experimental results are compared with a standard single-channel registration approach. Multi-channel registration of fractional anisotropy and T1-weighted images in the presence of atrophy: application to multiple sclerosis Both qualitative and quan...

Research paper thumbnail of A toolbox for multiple sclerosis lesion segmentation

Neuroradiology

Lesion segmentation plays an important role in the diagnosis and follow-up of multiple sclerosis ... more Lesion segmentation plays an important role in the diagnosis and follow-up of multiple sclerosis (MS). This task is very time-consuming and subject to intra- and inter-rater variability. In this paper, we present a new tool for automated MS lesion segmentation using T1w and fluid-attenuated inversion recovery (FLAIR) images. Our approach is based on two main steps, initial brain tissue segmentation according to the gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF) performed in T1w images, followed by a second step where the lesions are segmented as outliers to the normal apparent GM brain tissue on the FLAIR image. The tool has been validated using data from more than 100 MS patients acquired with different scanners and at different magnetic field strengths. Quantitative evaluation provided a better performance in terms of precision while maintaining similar results on sensitivity and Dice similarity measures compared with those of other approaches. Our tool is impl...

Research paper thumbnail of Agents for Social Search in Long-Term Digital Preservation

This paper describes the application of agents to automate information exchange for digital prese... more This paper describes the application of agents to automate information exchange for digital preservation. Agents are able to recommend preservation solutions and also apply them to different preservation situations. Trust models for question-routing and answer ranking that are implemented by means of agents, show greater performance than traditional keyword search methodologies.

Research paper thumbnail of Automatic multiple sclerosis lesion detection in brain MRI by FLAIR thresholding

Magnetic resonance imaging (MRI) is frequently used to detect and segment multiple sclerosis lesi... more Magnetic resonance imaging (MRI) is frequently used to detect and segment multiple sclerosis lesions due to the detailed and rich information provided. We present a modified expectation-maximisation algorithm to segment brain tissues (white matter, grey matter, and cerebro-spinal fluid) as well as a partial volume class containing fluid and grey matter. This algorithm provides an initial segmentation in which lesions are not separated from tissue, thus a second step is needed to find them. This second step involves the thresholding of the FLAIR image, followed by a regionwise refinement to discard false detections. To evaluate the proposal, we used a database with 45 cases comprising 1.5T imaging data from three different hospitals with different scanner machines and with a variable lesion load per case. The results for our database point out to a higher accuracy when compared to two of the best state-of-the-art approaches.

Research paper thumbnail of Comparison of 10 brain tissue segmentation methods using revisited IBSR annotations

Journal of magnetic resonance imaging : JMRI, 2015

Ground-truth annotations from the well-known Internet Brain Segmentation Repository (IBSR) datase... more Ground-truth annotations from the well-known Internet Brain Segmentation Repository (IBSR) datasets consider Sulcal cerebrospinal fluid (SCSF) voxels as gray matter. This can lead to bias when evaluating the performance of tissue segmentation methods. In this work we compare the accuracy of 10 brain tissue segmentation methods analyzing the effects of SCSF ground-truth voxels on accuracy estimations. The set of methods is composed by FAST, SPM5, SPM8, GAMIXTURE, ANN, FCM, KNN, SVPASEG, FANTASM, and PVC. Methods are evaluated using original IBSR ground-truth and ranked by means of their performance on pairwise comparisons using permutation tests. Afterward, the evaluation is repeated using IBSR ground-truth without considering SCSF. The Dice coefficient of all methods is affected by changes in SCSF annotations, especially on SPM5, SPM8 and FAST. When not considering SCSF voxels, SVPASEG (0.90 ± 0.01) and SPM8 (0.91 ± 0.01) are the methods from our study that appear more suitable for ...

Research paper thumbnail of Agents that supply knowledge exchange in long-term digital preservation

This paper describes an application of the agent technology for the automation of knowledge excha... more This paper describes an application of the agent technology for the automation of knowledge exchanges on digital preservation. Agents are able to recommend preservation solutions and finally they might be proactive and automatically apply them. The issues of this paper to make such a vision a reality are: trust models for question routing and answers ranking, the implementation of the

Research paper thumbnail of MARGA: Multispectral Adaptive Region Growing Algorithm for brain extraction on axial MRI

Computer Methods and Programs in Biomedicine, 2014

Brain extraction, also known as skull stripping, is one of the most important preprocessing steps... more Brain extraction, also known as skull stripping, is one of the most important preprocessing steps for many automatic brain image analysis. In this paper we present a new approach called Multispectral Adaptive Region Growing Algorithm (MARGA) to perform the skull stripping process. MARGA is based on a region growing (RG) algorithm which uses the complementary information provided by conventional magnetic resonance images (MRI) such as T1-weighted and T2-weighted to perform the brain segmentation. MARGA can be seen as an extension of the skull stripping method proposed by Park and Lee (2009) [1], enabling their use in both axial views and low quality images. Following the same idea, we first obtain seed regions that are then spread using a 2D RG algorithm which behaves differently in specific zones of the brain. This adaptation allows to deal with the fact that middle MRI slices have better image contrast between the brain and non-brain regions than superior and inferior brain slices where the contrast is smaller. MARGA is validated using three different databases: 10 simulated brains from the BrainWeb database; 2 data sets from the National Alliance for Medical Image Computing (NAMIC) database, the first one consisting in 10 normal brains and 10 brains of schizophrenic patients acquired with a 3T GE scanner, and the second one consisting in 5 brains from lupus patients acquired with a 3T Siemens scanner; and 10 brains of multiple sclerosis patients acquired with a 1.5T scanner. We have qualitatively and quantitatively compared MARGA with the well-known Brain Extraction Tool (BET), Brain Surface Extractor (BSE) and Statistical Parametric Mapping (SPM) approaches. The obtained results demonstrate the validity of MARGA, outperforming the results of those standard techniques.

Research paper thumbnail of Reconeixement de cd-roms musicals mitjançant visió per computador

Dissenyar, implementar i testejar un sistema per classificar imatges: disseny d’un sistema que pr... more Dissenyar, implementar i testejar un sistema per classificar imatges: disseny d’un sistema que primer aprèn com són les imatges d’una classe a partir d’un conjunt d’imatges d’entrenament i després és capaç de classificar noves imatges assignant-les-hi l’ etiqueta corresponent a una de les classes “apreses”. Concretament s’analitzen caràtules de cd-roms, les quals s’han de reconèixer per després reproduir automàticament la música del seu àlbum associat

Research paper thumbnail of Cortical fractal dimension predicts disability worsening in Multiple Sclerosis patients

NeuroImage: Clinical

Graphical abstract

Research paper thumbnail of Objective Evaluation of Multiple Sclerosis Lesion Segmentation using a Data Management and Processing Infrastructure

Scientific Reports, Sep 12, 2018

Research paper thumbnail of Automatic quantification of CT features in Acute Traumatic Brain Injury

Traumatic brain injury is a complex and diverse medical condition with a high frequency of intrac... more Traumatic brain injury is a complex and diverse medical condition with a high frequency of intracranial abnormalities. These can typically be visualized on a computed tomography (CT) scan, which provides important information for further patient management, such as the need for operative intervention. In order to quantify the extent of acute intracranial lesions and associated secondary injuries, such as midline shift and cisternal compression, visual assessment of CT images has limitations, including observer variability and lack of quantitative interpretation. Automated image analysis can quantify the extent of intracranial abnormalities and provide added value in routine clinical practice. In this article, we present icobrain, a fully automated method that reliably computes acute intracranial lesions volume based on deep learning, cistern volume, and midline shift on the noncontrast CT image of a patient. The accuracy of our method is evaluated on a subset of the multi-center data set from the CENTER-TBI (Collaborative European Neurotrauma Effectiveness Research in Traumatic Brain Injury) study for which expert annotations were used as a reference. Median volume differences between expert assessments and icobrain are 0.07 mL for acute intracranial lesions and-0.01 mL for cistern segmentation. Correlation between expert assessments and icobrain is 0.91 for volume of acute intracranial lesions and 0.94 for volume of the cisterns. For midline shift computations, median error is-0.22 mm, with a correlation of 0.93 with expert assessments.

Research paper thumbnail of Automated Detection of Lupus White Matter Lesions in MRI

Frontiers in Neuroinformatics, 2016

Brain magnetic resonance imaging provides detailed information which can be used to detect and se... more Brain magnetic resonance imaging provides detailed information which can be used to detect and segment white matter lesions (WML). In this work we propose an approach to automatically segment WML in Lupus patients by using T1w and fluid-attenuated inversion recovery (FLAIR) images. Lupus WML appear as small focal abnormal tissue observed as hyperintensities in the FLAIR images. The quantification of these WML is a key factor for the stratification of lupus patients and therefore both lesion detection and segmentation play an important role. In our approach, the T1w image is first used to classify the three main tissues of the brain, white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF), while the FLAIR image is then used to detect focal WML as outliers of its GM intensity distribution. A set of post-processing steps based on lesion size, tissue neighborhood, and location are used to refine the lesion candidates. The proposal is evaluated on 20 patients, presenting quali...

Research paper thumbnail of Automated tissue segmentation of MR brain images in the presence of white matter lesions

Medical image analysis, Jan 30, 2016

Over the last few years, the increasing interest in brain tissue volume measurements on clinical ... more Over the last few years, the increasing interest in brain tissue volume measurements on clinical settings has led to the development of a wide number of automated tissue segmentation methods. However, white matter lesions are known to reduce the performance of automated tissue segmentation methods, which requires manual annotation of the lesions and refilling them before segmentation, which is tedious and time-consuming. Here, we propose a new, fully automated T1-w/FLAIR tissue segmentation approach designed to deal with images in the presence of WM lesions. This approach integrates a robust partial volume tissue segmentation with WM outlier rejection and filling, combining intensity and probabilistic and morphological prior maps. We evaluate the performance of this method on the MRBrainS13 tissue segmentation challenge database, which contains images with vascular WM lesions, and also on a set of Multiple Sclerosis (MS) patient images. On both databases, we validate the performance...

Research paper thumbnail of Improving automated multiple sclerosis lesion segmentation with a cascaded 3D convolutional neural network approach

NeuroImage, Jan 19, 2017

In this paper, we present a novel automated method for White Matter (WM) lesion segmentation of M... more In this paper, we present a novel automated method for White Matter (WM) lesion segmentation of Multiple Sclerosis (MS) patient images. Our approach is based on a cascade of two 3D patch-wise convolutional neural networks (CNN). The first network is trained to be more sensitive revealing possible candidate lesion voxels while the second network is trained to reduce the number of misclassified voxels coming from the first network. This cascaded CNN architecture tends to learn well from a small (n≤35) set of labeled data of the same MRI contrast, which can be very interesting in practice, given the difficulty to obtain manual label annotations and the large amount of available unlabeled Magnetic Resonance Imaging (MRI) data. We evaluate the accuracy of the proposed method on the public MS lesion segmentation challenge MICCAI2008 dataset, comparing it with respect to other state-of-the-art MS lesion segmentation tools. Furthermore, the proposed method is also evaluated on two private M...

Research paper thumbnail of An SPM12 extension for multiple sclerosis lesion segmentation

Medical Imaging 2016: Image Processing, 2016

Purpose: Magnetic resonance imaging is nowadays the hallmark to diagnose multiple sclerosis (MS),... more Purpose: Magnetic resonance imaging is nowadays the hallmark to diagnose multiple sclerosis (MS), characterized by white matter lesions. Several approaches have been recently presented to tackle the lesion segmentation problem, but none of them have been accepted as a standard tool in the daily clinical practice. In this work we present yet another tool able to automatically segment white matter lesions outperforming the current-state-of-the-art approaches. Methods: This work is an extension of Roura et al. [1], where external and platform dependent pre-processing libraries (brain extraction, noise reduction and intensity normalization) were required to achieve an optimal performance. Here we have updated and included all these required pre-processing steps into a single framework (SPM software). Therefore, there is no need of external tools to achieve the desired segmentation results. Besides, we have changed the working space from T1w to FLAIR, reducing interpolation errors produced in the registration process from FLAIR to T1w space. Finally a post-processing constraint based on shape and location has been added to reduce false positive detections. Results: The evaluation of the tool has been done on 24 MS patients. Qualitative and quantitative results are shown with both approaches in terms of lesion detection and segmentation. Conclusion: We have simplified both installation and implementation of the approach, providing a multiplatform tool 1 integrated into the SPM software, which relies only on using T1w and FLAIR images. We have reduced with this new version the computation time of the previous approach while maintaining the performance.

Research paper thumbnail of Quantifying brain tissue volume in multiple sclerosis with automated lesion segmentation and filling

NeuroImage. Clinical, 2015

Lesion filling has been successfully applied to reduce the effect of hypo-intense T1-w Multiple S... more Lesion filling has been successfully applied to reduce the effect of hypo-intense T1-w Multiple Sclerosis (MS) lesions on automatic brain tissue segmentation. However, a study of fully automated pipelines incorporating lesion segmentation and lesion filling on tissue volume analysis has not yet been performed. Here, we analyzed the % of error introduced by automating the lesion segmentation and filling processes in the tissue segmentation of 70 clinically isolated syndrome patient images. First of all, images were processed using the LST and SLS toolkits with different pipeline combinations that differed in either automated or manual lesion segmentation, and lesion filling or masking out lesions. Then, images processed following each of the pipelines were segmented into gray matter (GM) and white matter (WM) using SPM8, and compared with the same images where expert lesion annotations were filled before segmentation. Our results showed that fully automated lesion segmentation and fi...

Research paper thumbnail of Multi-channel registration of fractional anisotropy and T1-weighted images in the presence of atrophy: application to multiple sclerosis

Functional neurology, Jan 15, 2015

Co-registration of structural T1-weighted (T1w) scans and diffusion tensor imaging (DTI)-derived ... more Co-registration of structural T1-weighted (T1w) scans and diffusion tensor imaging (DTI)-derived fractional anisotropy (FA) maps to a common space is of particular interest in neuroimaging, as T1w scans can be used for brain segmentation while DTI can provide microstructural tissue information. While the effect of lesions on registration has been tackled and solutions are available, the issue of atrophy is still open to discussion. Multi-channel (MC) registration algorithms have the advantage of maintaining anatomical correspondence between different contrast images after registration to any target space. In this work, we test the performance of an MC registration approach applied to T1w and FA data using simulated brain atrophy images. Experimental results are compared with a standard single-channel registration approach. Multi-channel registration of fractional anisotropy and T1-weighted images in the presence of atrophy: application to multiple sclerosis Both qualitative and quan...

Research paper thumbnail of A toolbox for multiple sclerosis lesion segmentation

Neuroradiology

Lesion segmentation plays an important role in the diagnosis and follow-up of multiple sclerosis ... more Lesion segmentation plays an important role in the diagnosis and follow-up of multiple sclerosis (MS). This task is very time-consuming and subject to intra- and inter-rater variability. In this paper, we present a new tool for automated MS lesion segmentation using T1w and fluid-attenuated inversion recovery (FLAIR) images. Our approach is based on two main steps, initial brain tissue segmentation according to the gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF) performed in T1w images, followed by a second step where the lesions are segmented as outliers to the normal apparent GM brain tissue on the FLAIR image. The tool has been validated using data from more than 100 MS patients acquired with different scanners and at different magnetic field strengths. Quantitative evaluation provided a better performance in terms of precision while maintaining similar results on sensitivity and Dice similarity measures compared with those of other approaches. Our tool is impl...

Research paper thumbnail of Agents for Social Search in Long-Term Digital Preservation

This paper describes the application of agents to automate information exchange for digital prese... more This paper describes the application of agents to automate information exchange for digital preservation. Agents are able to recommend preservation solutions and also apply them to different preservation situations. Trust models for question-routing and answer ranking that are implemented by means of agents, show greater performance than traditional keyword search methodologies.

Research paper thumbnail of Automatic multiple sclerosis lesion detection in brain MRI by FLAIR thresholding

Magnetic resonance imaging (MRI) is frequently used to detect and segment multiple sclerosis lesi... more Magnetic resonance imaging (MRI) is frequently used to detect and segment multiple sclerosis lesions due to the detailed and rich information provided. We present a modified expectation-maximisation algorithm to segment brain tissues (white matter, grey matter, and cerebro-spinal fluid) as well as a partial volume class containing fluid and grey matter. This algorithm provides an initial segmentation in which lesions are not separated from tissue, thus a second step is needed to find them. This second step involves the thresholding of the FLAIR image, followed by a regionwise refinement to discard false detections. To evaluate the proposal, we used a database with 45 cases comprising 1.5T imaging data from three different hospitals with different scanner machines and with a variable lesion load per case. The results for our database point out to a higher accuracy when compared to two of the best state-of-the-art approaches.

Research paper thumbnail of Comparison of 10 brain tissue segmentation methods using revisited IBSR annotations

Journal of magnetic resonance imaging : JMRI, 2015

Ground-truth annotations from the well-known Internet Brain Segmentation Repository (IBSR) datase... more Ground-truth annotations from the well-known Internet Brain Segmentation Repository (IBSR) datasets consider Sulcal cerebrospinal fluid (SCSF) voxels as gray matter. This can lead to bias when evaluating the performance of tissue segmentation methods. In this work we compare the accuracy of 10 brain tissue segmentation methods analyzing the effects of SCSF ground-truth voxels on accuracy estimations. The set of methods is composed by FAST, SPM5, SPM8, GAMIXTURE, ANN, FCM, KNN, SVPASEG, FANTASM, and PVC. Methods are evaluated using original IBSR ground-truth and ranked by means of their performance on pairwise comparisons using permutation tests. Afterward, the evaluation is repeated using IBSR ground-truth without considering SCSF. The Dice coefficient of all methods is affected by changes in SCSF annotations, especially on SPM5, SPM8 and FAST. When not considering SCSF voxels, SVPASEG (0.90 ± 0.01) and SPM8 (0.91 ± 0.01) are the methods from our study that appear more suitable for ...

Research paper thumbnail of Agents that supply knowledge exchange in long-term digital preservation

This paper describes an application of the agent technology for the automation of knowledge excha... more This paper describes an application of the agent technology for the automation of knowledge exchanges on digital preservation. Agents are able to recommend preservation solutions and finally they might be proactive and automatically apply them. The issues of this paper to make such a vision a reality are: trust models for question routing and answers ranking, the implementation of the

Research paper thumbnail of MARGA: Multispectral Adaptive Region Growing Algorithm for brain extraction on axial MRI

Computer Methods and Programs in Biomedicine, 2014

Brain extraction, also known as skull stripping, is one of the most important preprocessing steps... more Brain extraction, also known as skull stripping, is one of the most important preprocessing steps for many automatic brain image analysis. In this paper we present a new approach called Multispectral Adaptive Region Growing Algorithm (MARGA) to perform the skull stripping process. MARGA is based on a region growing (RG) algorithm which uses the complementary information provided by conventional magnetic resonance images (MRI) such as T1-weighted and T2-weighted to perform the brain segmentation. MARGA can be seen as an extension of the skull stripping method proposed by Park and Lee (2009) [1], enabling their use in both axial views and low quality images. Following the same idea, we first obtain seed regions that are then spread using a 2D RG algorithm which behaves differently in specific zones of the brain. This adaptation allows to deal with the fact that middle MRI slices have better image contrast between the brain and non-brain regions than superior and inferior brain slices where the contrast is smaller. MARGA is validated using three different databases: 10 simulated brains from the BrainWeb database; 2 data sets from the National Alliance for Medical Image Computing (NAMIC) database, the first one consisting in 10 normal brains and 10 brains of schizophrenic patients acquired with a 3T GE scanner, and the second one consisting in 5 brains from lupus patients acquired with a 3T Siemens scanner; and 10 brains of multiple sclerosis patients acquired with a 1.5T scanner. We have qualitatively and quantitatively compared MARGA with the well-known Brain Extraction Tool (BET), Brain Surface Extractor (BSE) and Statistical Parametric Mapping (SPM) approaches. The obtained results demonstrate the validity of MARGA, outperforming the results of those standard techniques.

Research paper thumbnail of Reconeixement de cd-roms musicals mitjançant visió per computador

Dissenyar, implementar i testejar un sistema per classificar imatges: disseny d’un sistema que pr... more Dissenyar, implementar i testejar un sistema per classificar imatges: disseny d’un sistema que primer aprèn com són les imatges d’una classe a partir d’un conjunt d’imatges d’entrenament i després és capaç de classificar noves imatges assignant-les-hi l’ etiqueta corresponent a una de les classes “apreses”. Concretament s’analitzen caràtules de cd-roms, les quals s’han de reconèixer per després reproduir automàticament la música del seu àlbum associat