return array of primes below limit using Sieve of Atkin Algorithm
http://en.wikipedia.org/wiki/Sieve_of_Atkin #JavaScript #primes (original) (raw)
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.Learn more about bidirectional Unicode characters
[ Show hidden characters]({{ revealButtonHref }})
function sieveOfAtkin(limit){ |
---|
var limitSqrt = Math.sqrt(limit); |
var sieve = []; |
var n; |
//prime start from 2, and 3 |
sieve[2] = true; |
sieve[3] = true; |
for (var x = 1; x <= limitSqrt; x++) { |
var xx = x*x; |
for (var y = 1; y <= limitSqrt; y++) { |
var yy = y*y; |
if (xx + yy >= limit) { |
break; |
} |
// first quadratic using m = 12 and r in R1 = {r : 1, 5} |
n = (4 * xx) + (yy); |
if (n <= limit && (n % 12 == 1 | |
sieve[n] = !sieve[n]; |
} |
// second quadratic using m = 12 and r in R2 = {r : 7} |
n = (3 * xx) + (yy); |
if (n <= limit && (n % 12 == 7)) { |
sieve[n] = !sieve[n]; |
} |
// third quadratic using m = 12 and r in R3 = {r : 11} |
n = (3 * xx) - (yy); |
if (x > y && n <= limit && (n % 12 == 11)) { |
sieve[n] = !sieve[n]; |
} |
} |
} |
// false each primes multiples |
for (n = 5; n <= limitSqrt; n++) { |
if (sieve[n]) { |
x = n * n; |
for (i = x; i <= limit; i += x) { |
sieve[i] = false; |
} |
} |
} |
//primes values are the one which sieve[x] = true |
return sieve; |
} |
primes = sieveOfAtkin(5000); |