feat: Add tie_weights parameter to Llava model initialization · EvolvingLMMs-Lab/lmms-eval@672d7e5 (original) (raw)

`@@ -58,6 +58,7 @@ def init(

`

58

58

`device_map="cuda:0",

`

59

59

`conv_template="vicuna_v1",

`

60

60

`use_cache=True,

`

``

61

`+

tie_weights: bool = True,

`

61

62

`truncate_context=False, # whether to truncate the context in generation, set it False for LLaVA-1.6

`

62

63

`customized_config=None, # ends in json

`

63

64

`**kwargs,

`

`@@ -97,6 +98,8 @@ def init(

`

97

98

`self._tokenizer, self._model, self._image_processor, self._max_length = load_pretrained_model(pretrained, None, model_name, device_map=self.device_map, **llava_model_args)

`

98

99

`self._config = self._model.config

`

99

100

`self.model.eval()

`

``

101

`+

if tie_weights:

`

``

102

`+

self.model.tie_weights()

`

100

103

``

101

104

`self.truncation = truncation

`

102

105

`self.batch_size_per_gpu = int(batch_size)

`