Merge pull request #73 from EvolvingLMMs-Lab/kc/qwen_vl_api · EvolvingLMMs-Lab/lmms-eval@caa5893 (original) (raw)
``
1
`+
from io import BytesIO
`
``
2
`+
from copy import deepcopy
`
``
3
`+
import os
`
``
4
`+
import base64
`
``
5
`+
from typing import List, Tuple, Union
`
``
6
`+
from tqdm import tqdm
`
``
7
`+
import requests as url_requests
`
``
8
`+
import time
`
``
9
`+
import logging
`
``
10
+
``
11
`+
from lmms_eval.api.instance import Instance
`
``
12
`+
from lmms_eval.api.model import lmms
`
``
13
`+
from lmms_eval.api.registry import register_model
`
``
14
`+
from lmms_eval import utils
`
``
15
+
``
16
`+
from PIL import Image
`
``
17
+
``
18
`+
NUM_SECONDS_TO_SLEEP = 5
`
``
19
`+
eval_logger = logging.getLogger("lmms-eval")
`
``
20
+
``
21
`+
try:
`
``
22
`+
import dashscope
`
``
23
`+
except:
`
``
24
`+
eval_logger.debug("Can not import Dashscope")
`
``
25
+
``
26
`+
API_KEY = os.getenv("DASHSCOPE_API_KEY", "YOUR_API_KEY")
`
``
27
+
``
28
+
``
29
`+
@register_model("qwen-vl-api")
`
``
30
`+
class Qwen_VL_API(lmms):
`
``
31
`+
def init(
`
``
32
`+
self,
`
``
33
`+
model_version: str = "qwen-vl-max",
`
``
34
`+
image_token: str = "", # Use to separate interleaved image and text
`
``
35
`+
system_prompt: str = "", # Whether you want some special system prompt here
`
``
36
`+
tmp_folder: str = "./tmp", # Due to qwen's api restriction,
`
``
37
`+
**kwargs,
`
``
38
`+
) -> None:
`
``
39
`+
super().init()
`
``
40
+
``
41
`+
self.model_version = model_version
`
``
42
`+
self.image_token = image_token
`
``
43
`+
self.system_prompt = system_prompt
`
``
44
`+
self.tmp_folder = tmp_folder
`
``
45
+
``
46
`+
@property
`
``
47
`+
def rank(self):
`
``
48
`+
return self._rank
`
``
49
+
``
50
`+
@property
`
``
51
`+
def world_size(self):
`
``
52
`+
return self._world_size
`
``
53
+
``
54
`+
def generate_until(self, requests) -> List[str]:
`
``
55
`+
res = []
`
``
56
`+
pbar = tqdm(total=len(requests), disable=(self.rank != 0), desc="Model Responding")
`
``
57
`+
os.makedirs(self.tmp_folder, exist_ok=True)
`
``
58
+
``
59
`+
for contexts, gen_kwargs, doc_to_visual, doc_id, task, split in [reg.args for reg in requests]:
`
``
60
`+
encode, pad, and truncate contexts for this batch
`
``
61
`+
visuals = [doc_to_visual(self.task_dict[task][split][doc_id])]
`
``
62
`+
visuals = self.flatten(visuals)
`
``
63
`+
imgs = []
`
``
64
+
``
65
`+
for idx, visual in enumerate(visuals):
`
``
66
`+
visual.save(os.path.join(self.tmp_folder, f"tmp_{idx}{self.rank}{self.world_size}.jpg"))
`
``
67
`+
imgs.append(os.path.join(self.tmp_folder, f"tmp_{idx}{self.rank}{self.world_size}.jpg"))
`
``
68
+
``
69
`+
messages = [{"role": "user", "content": []}]
`
``
70
+
``
71
`+
if self.image_token not in contexts:
`
``
72
`+
for img in imgs:
`
``
73
`+
messages[0]["content"].append({"image": img})
`
``
74
`+
messages[0]["content"].append({"text": contexts})
`
``
75
`+
else:
`
``
76
`+
contexts = contexts.split(self.image_token)
`
``
77
+
``
78
`+
for idx, img in enumerate(imgs):
`
``
79
`+
messages[0]["content"].append({"text": contexts[idx]})
`
``
80
`+
messages[0]["content"].append({"image": img})
`
``
81
`+
messages[0]["content"].append({"text": contexts[-1]})
`
``
82
+
``
83
`+
if "max_new_tokens" not in gen_kwargs or gen_kwargs["max_new_tokens"] > 1500:
`
``
84
`+
gen_kwargs["max_new_tokens"] = 1024
`
``
85
`+
if "temperature" not in gen_kwargs:
`
``
86
`+
gen_kwargs["temperature"] = 0
`
``
87
`+
if "top_p" not in gen_kwargs:
`
``
88
`+
gen_kwargs["top_p"] = None
`
``
89
`+
if "num_beams" not in gen_kwargs:
`
``
90
`+
gen_kwargs["num_beams"] = 1
`
``
91
+
``
92
`+
for attempt in range(5):
`
``
93
`+
try:
`
``
94
`+
response_data = dashscope.MultiModalConversation.call(model=self.model_version, messages=messages, api_key=API_KEY, max_length=gen_kwargs["max_new_tokens"])
`
``
95
`+
except Exception as e:
`
``
96
`+
eval_logger.info(f"Attempt {attempt + 1} failed with error: {str(e)}")
`
``
97
`+
if attempt < 5 - 1: # If we have retries left, sleep and then continue to next attempt
`
``
98
`+
time.sleep(NUM_SECONDS_TO_SLEEP)
`
``
99
`+
else: # If this was the last attempt, log and return empty
`
``
100
`+
eval_logger.error(f"All 5 attempts failed. Last error message: {str(e)}")
`
``
101
`+
res.append("")
`
``
102
`+
pbar.update(1)
`
``
103
`+
continue
`
``
104
`+
try:
`
``
105
`+
res.append(response_data["output"]["choices"][0]["message"]["content"][0]["text"].strip())
`
``
106
`+
except Exception as e:
`
``
107
`+
eval_logger.error(f"Error {e} happens when parsing input.")
`
``
108
`+
eval_logger.error(f"{response_data}")
`
``
109
`+
res.append("")
`
``
110
`+
pbar.update(1)
`
``
111
+
``
112
`+
pbar.close()
`
``
113
+
``
114
`+
return res
`
``
115
+
``
116
`+
def loglikelihood(self, requests: List[Instance]) -> List[Tuple[float, bool]]:
`
``
117
`+
assert False, "Not supported for claude"
`
``
118
+
``
119
`+
def flatten(self, input):
`
``
120
`+
new_list = []
`
``
121
`+
for i in input:
`
``
122
`+
for j in i:
`
``
123
`+
new_list.append(j)
`
``
124
`+
return new_list
`