GitHub - GitYCC/g2pW: Chinese Mandarin Grapheme-to-Phoneme Converter. 中文轉注音或拼音 (INTERSPEECH 2022) (original) (raw)
g2pW: Mandarin Grapheme-to-Phoneme Converter
Authors: Yi-Chang Chen, Yu-Chuan Chang, Yen-Cheng Chang and Yi-Ren Yeh
This is the official repository of our paper g2pW: A Conditional Weighted Softmax BERT for Polyphone Disambiguation in Mandarin (INTERSPEECH 2022).
News
- g2pW is included in PaddlePaddle/PaddleSpeech
- g2pW is included in mozillazg/pypinyin-g2pW
Getting Started
Dependency / Install
(This work was tested with PyTorch 1.7.0, CUDA 10.1, python 3.6 and Ubuntu 16.04.)
- Install PyTorch
$ pip install g2pw
Quick Demo
from g2pw import G2PWConverter conv = G2PWConverter() sentence = '上校請技術人員校正FN儀器' conv(sentence) [['ㄕㄤ4', 'ㄒㄧㄠ4', 'ㄑㄧㄥ3', 'ㄐㄧ4', 'ㄕㄨ4', 'ㄖㄣ2', 'ㄩㄢ2', 'ㄐㄧㄠ4', 'ㄓㄥ4', None, None, 'ㄧ2', 'ㄑㄧ4']] sentences = ['銀行', '行動'] conv(sentences) [['ㄧㄣ2', 'ㄏㄤ2'], ['ㄒㄧㄥ2', 'ㄉㄨㄥ4']]
Load Offline Model
conv = G2PWConverter(model_dir='./G2PWModel-v2-onnx/', model_source='./path-to/bert-base-chinese/')
Support Simplified Chinese and Pinyin
from g2pw import G2PWConverter conv = G2PWConverter(style='pinyin', enable_non_tradional_chinese=True) conv('然而,他红了20年以后,他竟退出了大家的视线。') [['ran2', 'er2', None, 'ta1', 'hong2', 'le5', None, None, 'nian2', 'yi3', 'hou4', None, 'ta1', 'jing4', 'tui4', 'chu1', 'le5', 'da4', 'jia1', 'de5', 'shi4', 'xian4', None]]
Scripts
$ git clone https://github.com/GitYCC/g2pW.git
Train Model
For example, we train models on CPP dataset as follows:
$ bash cpp_dataset/download.sh
$ python scripts/train_g2p_bert.py --config configs/config_cpp.py
Testing
$ python scripts/test_g2p_bert.py \
--config saved_models/CPP_BERT_M_DescWS-Sec-cLin-B_POSw01/config.py \
--checkpoint saved_models/CPP_BERT_M_DescWS-Sec-cLin-B_POSw01/best_accuracy.pth \
--sent_path cpp_dataset/test.sent \
--output_path output_pred.txt
Prediction
$ python scripts/predict_g2p_bert.py \
--config saved_models/CPP_BERT_M_DescWS-Sec-cLin-B_POSw01/config.py \
--checkpoint saved_models/CPP_BERT_M_DescWS-Sec-cLin-B_POSw01/best_accuracy.pth \
--sent_path cpp_dataset/test.sent \
--lb_path cpp_dataset/test.lb
Checkpoints
Citation
To cite the code/data/paper, please use this BibTex
@inproceedings{chen22d_interspeech, title = {g2pW: A Conditional Weighted Softmax BERT for Polyphone Disambiguation in Mandarin}, author = {Yi-Chang Chen and Yu-Chuan Steven and Yen-Cheng Chang and Yi-Ren Yeh}, year = {2022}, booktitle = {Interspeech 2022}, pages = {1926--1930}, doi = {10.21437/Interspeech.2022-216}, issn = {2958-1796}, }