GitHub - MinishLab/tokenlearn: Pre-train Static Word Embeddings (original) (raw)
Tokenlearn
Tokenlearn is a method to pre-train Model2Vec.
The method is described in detail in our Tokenlearn blogpost.
Quickstart
Install the package with:
The basic usage of Tokenlearn consists of two CLI scripts: featurize
and train
.
Tokenlearn is trained using means from a sentence transformer. To create means, the tokenlearn-featurize
CLI can be used:
python3 -m tokenlearn.featurize --model-name "baai/bge-base-en-v1.5" --output-dir "data/c4_features"
NOTE: the default model is trained on the C4 dataset. If you want to use a different dataset, the following code can be used:
python3 -m tokenlearn.featurize
--model-name "baai/bge-base-en-v1.5"
--output-dir "data/c4_features"
--dataset-path "allenai/c4"
--dataset-name "en"
--dataset-split "train"
To train a model on the featurized data, the tokenlearn-train
CLI can be used:
python3 -m tokenlearn.train --model-name "baai/bge-base-en-v1.5" --data-path "data/c4_features" --save-path ""
Training will create two models:
- The base trained model.
- The base model with weighting applied. This is the model that should be used for downstream tasks.
NOTE: the code assumes that the padding token ID in your tokenizer is 0. If this is not the case, you will need to modify the code.
Evaluation
To evaluate a model, you can use the following command after installing the optional evaluation dependencies:
pip install evaluation@git+https://github.com/MinishLab/evaluation@main
from model2vec import StaticModel
from evaluation import CustomMTEB, get_tasks, parse_mteb_results, make_leaderboard, summarize_results from mteb import ModelMeta
Get all available tasks
tasks = get_tasks()
Define the CustomMTEB object with the specified tasks
evaluation = CustomMTEB(tasks=tasks)
Load a trained model
model_name = "tokenlearn_model" model = StaticModel.from_pretrained(model_name)
Optionally, add model metadata in MTEB format
model.mteb_model_meta = ModelMeta( name=model_name, revision="no_revision_available", release_date=None, languages=None )
Run the evaluation
results = evaluation.run(model, eval_splits=["test"], output_folder=f"results")
Parse the results and summarize them
parsed_results = parse_mteb_results(mteb_results=results, model_name=model_name) task_scores = summarize_results(parsed_results)
Print the results in a leaderboard format
print(make_leaderboard(task_scores))
License
MIT