[CI]【Hackathon 9th Sprint No.25】功能模块 fastdeploy/input/ernie4_5_vl_processor/image_preprocessor/image_preprocessor_adaptive.py 单测补充 by kesmeey · Pull Request #5265 · PaddlePaddle/FastDeploy (original) (raw)
class TestImagePreprocessorAdaptive(unittest.TestCase):
def setUp(self):
"""Set up test environment"""
self.processor = AdaptiveImageProcessor(
min_pixels=56 * 56,
max_pixels=28 * 28 * 1280,
patch_size=14,
temporal_conv_size=2,
merge_size=2,
)
def test_init(self):
"""Test initialization"""
self.assertEqual(self.processor.min_pixels, 56 * 56)
self.assertEqual(self.processor.max_pixels, 28 * 28 * 1280)
self.assertEqual(self.processor.patch_size, 14)
self.assertEqual(self.processor.temporal_conv_size, 2)
self.assertEqual(self.processor.merge_size, 2)
def test_set_pixels(self):
"""Test setting pixels"""
self.processor.set_pixels(min_pixels=100, max_pixels=200, msg="test")
self.assertEqual(self.processor.min_pixels, 100)
self.assertEqual(self.processor.max_pixels, 200)
self.assertEqual(self.processor.size["min_pixels"], 100)
self.assertEqual(self.processor.size["max_pixels"], 200)
def test_set_pixels_negative_min(self):
"""Test setting negative min_pixels should raise error"""
with self.assertRaises(AssertionError):
self.processor.set_pixels(min_pixels=-1)
def test_set_pixels_zero_max(self):
"""Test setting 0 or negative max_pixels should raise error"""
with self.assertRaises(AssertionError):
self.processor.set_pixels(max_pixels=0)
def test_get_smarted_resize(self):
"""Test get_smarted_resize"""
height, width = 224, 224
(resized_h, resized_w), (patches_h, patches_w) = self.processor.get_smarted_resize(height, width)
self.assertIsInstance(resized_h, int)
self.assertIsInstance(resized_w, int)
self.assertIsInstance(patches_h, int)
self.assertIsInstance(patches_w, int)
def test_get_smarted_resize_with_custom_pixels(self):
"""Test get_smarted_resize with custom pixels"""
height, width = 224, 224
(resized_h, resized_w), (_, _) = self.processor.get_smarted_resize(
height, width, min_pixels=100, max_pixels=10000
)
self.assertIsInstance(resized_h, int)
self.assertIsInstance(resized_w, int)
def test_round_by_factor(self):
"""Test round_by_factor"""
self.assertEqual(round_by_factor(100, 28), 112) # 100/28 ≈ 3.57, round(3.57) = 4, 4*28 = 112
self.assertEqual(round_by_factor(50, 10), 50)
self.assertEqual(round_by_factor(55, 10), 60)
def test_ceil_by_factor(self):
"""Test ceil_by_factor"""
self.assertEqual(ceil_by_factor(100, 28), 112) # ceil(100/28)*28 = ceil(3.57)*28 = 4*28 = 112
self.assertEqual(ceil_by_factor(50, 10), 50)
self.assertEqual(ceil_by_factor(55, 10), 60)
def test_floor_by_factor(self):
"""Test floor_by_factor"""
self.assertEqual(floor_by_factor(100, 28), 84) # floor(100/28)*28 = floor(3.57)*28 = 3*28 = 84
self.assertEqual(floor_by_factor(50, 10), 50)
self.assertEqual(floor_by_factor(55, 10), 50)
def test_smart_resize_basic(self):
"""Test smart_resize basic functionality"""
height, width = 224, 224
new_h, new_w = smart_resize(height, width, factor=28, min_pixels=56 * 56, max_pixels=28 * 28 * 1280)
self.assertIsInstance(new_h, int)
self.assertIsInstance(new_w, int)
self.assertEqual(new_h % 28, 0)
self.assertEqual(new_w % 28, 0)
def test_smart_resize_high_aspect_ratio(self):
"""Test case when aspect ratio exceeds MAX_RATIO"""
height, width = 1000, 10 # aspect ratio = 100
new_h, new_w = smart_resize(height, width, factor=28, min_pixels=56 * 56, max_pixels=28 * 28 * 1280)
self.assertIsInstance(new_h, int)
self.assertIsInstance(new_w, int)
self.assertLessEqual(max(new_h, new_w) / min(new_h, new_w), 200)
def test_smart_resize_too_large(self):
"""Test case when pixel count exceeds max_pixels"""
height, width = 10000, 10000
new_h, new_w = smart_resize(height, width, factor=28, min_pixels=56 * 56, max_pixels=28 * 28 * 1280)
self.assertLessEqual(new_h * new_w, 28 * 28 * 1280)
def test_smart_resize_too_small(self):
"""Test case when pixel count is less than min_pixels"""
height, width = 10, 10
new_h, new_w = smart_resize(height, width, factor=28, min_pixels=56 * 56, max_pixels=28 * 28 * 1280)
self.assertGreaterEqual(new_h * new_w, 56 * 56)
def test_smart_resize_invalid_result(self):
"""Test case when smart_resize returns invalid result"""
# This case should not happen, but if it does, ValueError will be raised
# We test by setting extreme parameters
# Note: This test may not trigger ValueError, as smart_resize logic may not produce invalid results
# If testing is really needed, try other extreme cases
try:
result = smart_resize(1, 1, factor=100000, min_pixels=100, max_pixels=1000)
# If successful, verify result
self.assertIsInstance(result, tuple)
self.assertEqual(len(result), 2)
except ValueError:
# If ValueError is raised, this is also expected
pass
def test_is_scaled_image_uint8(self):
"""Test is_scaled_image for uint8 image"""
image = np.array([[0, 255], [128, 200]], dtype=np.uint8)
self.assertFalse(is_scaled_image(image))
def test_is_scaled_image_scaled(self):
"""Test is_scaled_image for scaled image"""
image = np.array([[0.0, 0.5], [0.3, 1.0]], dtype=np.float32)
self.assertTrue(is_scaled_image(image))
def test_is_scaled_image_not_scaled(self):
"""Test is_scaled_image for unscaled float image"""
image = np.array([[0.0, 255.0], [128.0, 300.0]], dtype=np.float32)
self.assertFalse(is_scaled_image(image))
def test_make_batched_images_single(self):
"""Test make_batched_images handling single image"""
img = Image.new("RGB", (224, 224))
result = make_batched_images(img)
self.assertEqual(len(result), 1)
self.assertEqual(result[0], img)
def test_make_batched_images_list(self):
"""Test make_batched_images handling image list"""
imgs = [Image.new("RGB", (224, 224)) for _ in range(3)]
result = make_batched_images(imgs)
self.assertEqual(len(result), 3)
self.assertEqual(result, imgs)
def test_make_batched_images_nested_list(self):
"""Test make_batched_images handling nested list"""
imgs = [[Image.new("RGB", (224, 224)) for _ in range(2)] for _ in range(2)]
result = make_batched_images(imgs)
self.assertEqual(len(result), 4) # 2*2 = 4
def test_make_batched_images_invalid(self):
"""Test make_batched_images handling invalid input"""
with self.assertRaises(ValueError):
make_batched_images("invalid")
def test_make_batched_videos_list_of_images(self):
"""Test make_batched_videos handling image list"""
imgs = [Image.new("RGB", (224, 224)) for _ in range(3)]
result = make_batched_videos(imgs)
self.assertEqual(len(result), 1)
self.assertEqual(len(result[0]), 3)
def test_make_batched_videos_nested_list(self):
"""Test make_batched_videos handling nested list"""
imgs = [[Image.new("RGB", (224, 224)) for _ in range(2)] for _ in range(2)]
result = make_batched_videos(imgs)
self.assertEqual(len(result), 2)
self.assertEqual(len(result[0]), 2)
def test_make_batched_videos_4d_array(self):
"""Test make_batched_videos handling 4D array"""
video = np.random.rand(3, 224, 224, 3).astype(np.uint8)
result = make_batched_videos(video)
self.assertEqual(len(result), 1)
self.assertIsInstance(result[0], list)
def test_make_batched_videos_invalid(self):
"""Test make_batched_videos handling invalid input"""
with self.assertRaises(ValueError):
make_batched_videos("invalid")
def test_preprocess_images(self):
"""Test preprocess handling images"""
img = Image.new("RGB", (224, 224))
result = self.processor.preprocess(images=img)
self.assertIn("pixel_values", result)
self.assertIn("image_grid_thw", result)
def test_preprocess_videos(self):
"""Test preprocess handling videos"""
frames = [Image.new("RGB", (224, 224)) for _ in range(4)]
result = self.processor.preprocess(images=None, videos=frames)
self.assertIn("pixel_values_videos", result)
self.assertIn("video_grid_thw", result)
def test_preprocess_both_images_and_videos(self):
"""Test preprocess handling both images and videos"""
img = Image.new("RGB", (224, 224))
frames = [Image.new("RGB", (224, 224)) for _ in range(4)]
result = self.processor.preprocess(images=img, videos=frames)
# When both images and videos are provided, may only return videos result
# According to code logic, if videos is not None, it will overwrite data dict
self.assertTrue("pixel_values" in result or "pixel_values_videos" in result)
def test_preprocess_invalid_images(self):
"""Test preprocess handling invalid image"""
with self.assertRaises(ValueError):
self.processor.preprocess(images="invalid")
def test_preprocess_with_predetermined_grid_thw(self):
"""Test preprocess using predetermined_grid_thw"""
img = Image.new("RGB", (224, 224))
# predetermined_grid_thw should be (h, w) format, not [1, h, w]
predetermined_grid_thw = [(16, 16)] # For single image, should be (h, w) tuple
result = self.processor.preprocess(images=img, predetermined_grid_thw=predetermined_grid_thw)
self.assertIn("pixel_values", result)
def test_preprocess_no_resize(self):
"""Test preprocess without resize"""
img = Image.new("RGB", (224, 224))
result = self.processor.preprocess(images=img, do_resize=False)
self.assertIn("pixel_values", result)
def test_preprocess_no_rescale(self):
"""Test preprocess without rescale"""
img = Image.new("RGB", (224, 224))
result = self.processor.preprocess(images=img, do_rescale=False)
self.assertIn("pixel_values", result)
def test_preprocess_no_normalize(self):
"""Test preprocess without normalize"""
img = Image.new("RGB", (224, 224))
result = self.processor.preprocess(images=img, do_normalize=False)
self.assertIn("pixel_values", result)
def test_preprocess_custom_mean_std(self):
"""Test preprocess using custom mean and std"""
img = Image.new("RGB", (224, 224))
result = self.processor.preprocess(images=img, image_mean=[0.5, 0.5, 0.5], image_std=[0.5, 0.5, 0.5])
self.assertIn("pixel_values", result)
def test_make_batched_videos_4d_array_in_list(self):
"""Test make_batched_videos handling 4D array in list (lines 119-120)"""
# Create a list of 4D arrays
videos = [np.random.rand(3, 224, 224, 3).astype(np.uint8)]
result = make_batched_videos(videos)
self.assertEqual(len(result), 1)
self.assertIsInstance(result[0], list)
def test_preprocess_do_convert_rgb(self):
"""Test preprocess with do_convert_rgb=True (line 289)"""
img = Image.new("L", (224, 224)) # Grayscale image
result = self.processor.preprocess(images=img, do_convert_rgb=True)
self.assertIn("pixel_values", result)
def test_preprocess_scaled_image_warning(self):
"""Test warning for scaled image in preprocess (line 295)"""
# Create a scaled image (values between 0-1)
img_array = np.random.rand(224, 224, 3).astype(np.float32)
# Use patch to capture warning
with patch(
"fastdeploy.input.ernie4_5_vl_processor.image_preprocessor.image_preprocessor_adaptive.data_processor_logger"
) as mock_logger:
# Directly call _preprocess, pass scaled image
self.processor._preprocess(
[img_array], # Pass scaled numpy array
do_rescale=True,
do_convert_rgb=False,
)
# Verify warning is called (if is_scaled_image returns True)
# mock_logger.warning should be called
if is_scaled_image(img_array):
# If image is indeed scaled, warning should be called
mock_logger.warning.assert_called()
def test_preprocess_data_format_last(self):
"""Test preprocess with data_format=LAST (line 351)"""
img = Image.new("RGB", (224, 224))
from paddleformers.transformers.image_utils import ChannelDimension
result = self.processor.preprocess(images=img, data_format=ChannelDimension.LAST)
self.assertIn("pixel_values", result)
def test_preprocess_invalid_images_check(self):
"""Test invalid image check in preprocess (line 464)"""
# Test invalid image type - need to ensure valid_images returns False
# Use patch to make valid_images return False, but make_batched_images succeeds
with patch(
"fastdeploy.input.ernie4_5_vl_processor.image_preprocessor.image_preprocessor_adaptive.valid_images"
) as mock_valid:
mock_valid.return_value = False
valid_images_list = [Image.new("RGB", (224, 224))] # Valid image, but valid_images returns False
with self.assertRaises(ValueError) as context:
self.processor.preprocess(images=valid_images_list)
self.assertIn("Invalid image type", str(context.exception))
def test_smart_resize_high_aspect_ratio_height_gt_width(self):
"""Test smart_resize when aspect ratio exceeds MAX_RATIO, height > width case (lines 558-560)"""
height, width = 10000, 10 # height > width, aspect ratio = 1000
new_h, new_w = smart_resize(height, width, factor=28, min_pixels=56 * 56, max_pixels=28 * 28 * 1280)
self.assertIsInstance(new_h, int)
self.assertIsInstance(new_w, int)
self.assertLessEqual(max(new_h, new_w) / min(new_h, new_w), 200)
def test_smart_resize_high_aspect_ratio_width_gt_height(self):
"""Test smart_resize when aspect ratio exceeds MAX_RATIO, width > height case (lines 561-563)"""
height, width = 10, 10000 # width > height, aspect ratio = 1000
new_h, new_w = smart_resize(height, width, factor=28, min_pixels=56 * 56, max_pixels=28 * 28 * 1280)
self.assertIsInstance(new_h, int)
self.assertIsInstance(new_w, int)
self.assertLessEqual(max(new_h, new_w) / min(new_h, new_w), 200)
def test_is_scaled_image_edge_cases(self):
"""Test is_scaled_image edge cases (lines 80-84)"""
# Test with values exactly at boundaries
image1 = np.array([[0.0, 1.0]], dtype=np.float32)
self.assertTrue(is_scaled_image(image1))
image2 = np.array([[0.0, 1.1]], dtype=np.float32)
self.assertFalse(is_scaled_image(image2))
image3 = np.array([[-0.1, 1.0]], dtype=np.float32)
self.assertFalse(is_scaled_image(image3))
def test_make_batched_images_nested_list_edge_case(self):
"""Test make_batched_images with nested list edge case (lines 98-107)"""
# Test with nested list where first element is a list of images
imgs = [[Image.new("RGB", (224, 224)) for _ in range(2)] for _ in range(2)]
result = make_batched_images(imgs)
self.assertEqual(len(result), 4)
def test_make_batched_videos_edge_cases(self):
"""Test make_batched_videos edge cases (lines 113-125)"""
# Test with single Image.Image in list
img = Image.new("RGB", (224, 224))
result = make_batched_videos([img])
self.assertEqual(len(result), 1)
self.assertEqual(len(result[0]), 1)
# Test with 4D array (video)
video = np.random.rand(3, 224, 224, 3).astype(np.uint8)
result = make_batched_videos(video)
self.assertEqual(len(result), 1)
self.assertIsInstance(result[0], list)
def test_preprocess_predetermined_grid_thw_multiple_images(self):
"""Test preprocess with predetermined_grid_thw for multiple images (lines 307-310)"""
imgs = [Image.new("RGB", (224, 224)) for _ in range(2)]
predetermined_grid_thw = [(16, 16), (20, 20)]
result = self.processor.preprocess(images=imgs, predetermined_grid_thw=predetermined_grid_thw)
self.assertIn("pixel_values", result)
def test_preprocess_predetermined_grid_thw_length_mismatch(self):
"""Test preprocess with predetermined_grid_thw length mismatch (lines 308-310)
Note: The implementation raises IndexError when predetermined_grid_thw length
doesn't match images length, because it accesses predetermined_grid_thw[img_idx]
directly without checking bounds first.
"""
imgs = [Image.new("RGB", (224, 224)) for _ in range(2)]
predetermined_grid_thw = [(16, 16)] # Length mismatch - only 1 element for 2 images
# The function raises IndexError when accessing predetermined_grid_thw[1]
with self.assertRaises(IndexError):
self.processor.preprocess(images=imgs, predetermined_grid_thw=predetermined_grid_thw)
def test_preprocess_with_input_data_format(self):
"""Test preprocess with input_data_format parameter (lines 299-301)"""
img = Image.new("RGB", (224, 224))
from paddleformers.transformers.image_utils import ChannelDimension
result = self.processor.preprocess(images=img, input_data_format=ChannelDimension.FIRST)
self.assertIn("pixel_values", result)
def test_preprocess_do_resize_with_predetermined_grid_thw(self):
"""Test preprocess with do_resize=True and predetermined_grid_thw (lines 314-317)"""
img = Image.new("RGB", (224, 224))
predetermined_grid_thw = [(16, 16)]
result = self.processor.preprocess(images=img, predetermined_grid_thw=predetermined_grid_thw, do_resize=True)
self.assertIn("pixel_values", result)
def test_preprocess_videos_with_predetermined_grid_thw(self):
"""Test preprocess videos with predetermined_grid_thw (lines 511)"""
frames = [Image.new("RGB", (224, 224)) for _ in range(4)]
predetermined_grid_thw = [(16, 16)] * 4
result = self.processor.preprocess(images=None, videos=frames, predetermined_grid_thw=predetermined_grid_thw)
self.assertIn("pixel_values_videos", result)
def test_preprocess_multiple_images_loop(self):
"""Test preprocess with multiple images in loop (lines 468-488)"""
imgs = [Image.new("RGB", (224, 224)) for _ in range(3)]
result = self.processor.preprocess(images=imgs)
self.assertIn("pixel_values", result)
self.assertIn("image_grid_thw", result)
def test_preprocess_videos_loop(self):
"""Test preprocess with videos in loop (lines 496-521)"""
videos = [[Image.new("RGB", (224, 224)) for _ in range(4)] for _ in range(2)]
result = self.processor.preprocess(images=None, videos=videos)
self.assertIn("pixel_values_videos", result)
self.assertIn("video_grid_thw", result)
def test_preprocess_return_tensors(self):
"""Test preprocess with return_tensors parameter (lines 396, 523)"""
img = Image.new("RGB", (224, 224))
# Use string instead of TensorType enum which may not be available
result = self.processor.preprocess(images=img, return_tensors="np")
self.assertIn("pixel_values", result)
def test_preprocess_channel_dimension_none(self):
"""Test preprocess with input_data_format=None (lines 299-301)"""
img = Image.new("RGB", (224, 224))
result = self.processor.preprocess(images=img, input_data_format=None)
self.assertIn("pixel_values", result)
def test_preprocess_do_rescale_false_with_scaled_image(self):
"""Test preprocess with do_rescale=False and scaled image (line 335)"""
# Create a scaled image
img_array = np.random.rand(224, 224, 3).astype(np.float32) * 0.5 # Values in [0, 0.5]
img = Image.fromarray((img_array * 255).astype(np.uint8))
result = self.processor.preprocess(images=img, do_rescale=False)
self.assertIn("pixel_values", result)
def test_preprocess_do_normalize_false(self):
"""Test preprocess with do_normalize=False (lines 338-344)"""
img = Image.new("RGB", (224, 224))
result = self.processor.preprocess(images=img, do_normalize=False)
self.assertIn("pixel_values", result)
def test_preprocess_custom_resample(self):
"""Test preprocess with custom resample parameter (line 332)"""
img = Image.new("RGB", (224, 224))
from PIL import Image as PILImage
result = self.processor.preprocess(images=img, resample=PILImage.BILINEAR)
self.assertIn("pixel_values", result)
def test_preprocess_custom_rescale_factor(self):
"""Test preprocess with custom rescale_factor (line 336)"""
img = Image.new("RGB", (224, 224))
result = self.processor.preprocess(images=img, rescale_factor=1.0 / 128.0)
self.assertIn("pixel_values", result)
def test_preprocess_custom_image_mean_std(self):
"""Test preprocess with custom image_mean and image_std (lines 339-344)"""
img = Image.new("RGB", (224, 224))
result = self.processor.preprocess(
images=img, image_mean=[0.485, 0.456, 0.406], image_std=[0.229, 0.224, 0.225]
)
self.assertIn("pixel_values", result)
def test_preprocess_data_format_channels_first(self):
"""Test preprocess with data_format=FIRST (line 346)"""
img = Image.new("RGB", (224, 224))
from paddleformers.transformers.image_utils import ChannelDimension
result = self.processor.preprocess(images=img, data_format=ChannelDimension.FIRST)
self.assertIn("pixel_values", result)
def test_preprocess_data_format_channels_last(self):
"""Test preprocess with data_format=LAST (line 350)"""
img = Image.new("RGB", (224, 224))
from paddleformers.transformers.image_utils import ChannelDimension
result = self.processor.preprocess(images=img, data_format=ChannelDimension.LAST)
self.assertIn("pixel_values", result)
def test_preprocess_patches_reshape(self):
"""Test preprocess patches reshape logic (lines 349-381)"""
img = Image.new("RGB", (224, 224))
result = self.processor.preprocess(images=img)
self.assertIn("pixel_values", result)
# Verify pixel_values shape
pixel_values = result["pixel_values"]
self.assertIsInstance(pixel_values, np.ndarray)
def test_preprocess_videos_multiple(self):
"""Test preprocess with multiple videos (lines 496-521)"""
videos = [
[Image.new("RGB", (224, 224)) for _ in range(4)],
[Image.new("RGB", (224, 224)) for _ in range(4)],
]
result = self.processor.preprocess(images=None, videos=videos)
self.assertIn("pixel_values_videos", result)
self.assertIn("video_grid_thw", result)
def test_make_batched_images_invalid_nested_list(self):
"""Test make_batched_images with invalid nested list (line 98)"""
# Test with nested list but first element is not an image
invalid_input = [[1, 2, 3], [4, 5, 6]]
with self.assertRaises(ValueError) as context:
make_batched_images(invalid_input)
self.assertIn("Could not make batched images", str(context.exception))
def test_make_batched_images_invalid_single(self):
"""Test make_batched_images with invalid single input (line 107)"""
invalid_input = "not an image"
with self.assertRaises(ValueError) as context:
make_batched_images(invalid_input)
self.assertIn("Could not make batched images", str(context.exception))
def test_make_batched_videos_nested_list_of_images(self):
"""Test make_batched_videos with nested list of images (line 113)"""
images = [[Image.new("RGB", (224, 224)) for _ in range(2)]]
result = make_batched_videos(images)
self.assertEqual(result, images)
def test_make_batched_videos_list_of_images_nested_output(self):
"""Test make_batched_videos with list of images (line 117)"""
images = [Image.new("RGB", (224, 224)) for _ in range(2)]
result = make_batched_videos(images)
self.assertEqual(result, [images])
def test_make_batched_videos_4d_array_in_list_variant(self):
"""Test make_batched_videos with 4D array in list (line 119)
Note: make_batched_videos expects 4D array (time, height, width, channels),
not 5D array (batch, time, height, width, channels).
"""
# Create a 4D numpy array (time, height, width, channels)
video_array = np.random.rand(4, 224, 224, 3).astype(np.uint8)
result = make_batched_videos([video_array])
self.assertIsInstance(result, list)
def test_make_batched_videos_4d_array_single(self):
"""Test make_batched_videos with single 4D array (line 122)
Note: make_batched_videos expects 4D array (time, height, width, channels),
not 5D array (batch, time, height, width, channels).
"""
# Create a 4D numpy array (time, height, width, channels)
video_array = np.random.rand(4, 224, 224, 3).astype(np.uint8)
result = make_batched_videos(video_array)
self.assertIsInstance(result, list)
def test_make_batched_videos_invalid_input(self):
"""Test make_batched_videos with invalid input (line 125)"""
invalid_input = "not a video"
with self.assertRaises(ValueError) as context:
make_batched_videos(invalid_input)
self.assertIn("Could not make batched video", str(context.exception))
def test_is_scaled_image_uint8_false(self):
"""Test is_scaled_image with uint8 image (line 80)"""
image = np.random.rand(224, 224, 3).astype(np.uint8) * 255
result = is_scaled_image(image)
self.assertFalse(result)
def test_is_scaled_image_scaled_true(self):
"""Test is_scaled_image with scaled float image (line 84)"""
image = np.random.rand(224, 224, 3).astype(np.float32) * 0.5 # Values in [0, 0.5]
result = is_scaled_image(image)
self.assertTrue(result)
def test_is_scaled_image_not_scaled_false(self):
"""Test is_scaled_image with non-scaled float image (line 84)"""
image = np.random.rand(224, 224, 3).astype(np.float32) * 255 # Values > 1
result = is_scaled_image(image)
self.assertFalse(result)
def test_preprocess_with_scaled_image_warning(self):
"""Test preprocess with scaled image triggers warning (lines 294-298)
Note: The warning is only triggered when is_scaled_image() returns True,
which requires float images with values in [0, 1]. Converting to PIL Image
and back converts to uint8, so the warning won't be triggered.
This test verifies the preprocess works without errors.
"""
# Create a scaled image (values in [0, 1])
scaled_image = np.random.rand(224, 224, 3).astype(np.float32) * 0.5
scaled_image = Image.fromarray((scaled_image * 255).astype(np.uint8))
# The image is now uint8, so is_scaled_image returns False and no warning is triggered
result = self.processor.preprocess(images=[scaled_image], do_rescale=True)
self.assertIn("pixel_values", result)
def test_preprocess_predetermined_grid_thw_length_mismatch_assert(self):
"""Test preprocess with predetermined_grid_thw length mismatch (line 310)
Note: The source code expects predetermined_grid_thw elements to be (height, width) tuples,
but when 3-element arrays like [1, 16, 16] are passed, it raises ValueError when unpacking.
"""
images = [Image.new("RGB", (224, 224)) for _ in range(2)]
predetermined_grid_thw = np.array([[1, 16, 16]]) # Only 1, but 2 images
# First fails because of unpacking 3 values into 2 variables
with self.assertRaises(ValueError) as context:
self.processor.preprocess(images=images, predetermined_grid_thw=predetermined_grid_thw, do_resize=True)
self.assertIn("too many values to unpack", str(context.exception))
def test_preprocess_loop_multiple_images(self):
"""Test preprocess loop with multiple images (lines 312-348)"""
images = [Image.new("RGB", (224, 224)) for _ in range(3)]
result = self.processor.preprocess(images=images)
self.assertIn("pixel_values", result)
pixel_values = result["pixel_values"]
self.assertIsInstance(pixel_values, np.ndarray)
def test_preprocess_with_predetermined_grid_thw_in_loop(self):
"""Test preprocess with predetermined_grid_thw in loop (lines 314-317)
Note: predetermined_grid_thw expects (height, width) tuples, not (t, h, w).
The values are grid dimensions that get multiplied by patch_size.
"""
images = [Image.new("RGB", (224, 224)) for _ in range(2)]
# Use 2D grid (h, w) format
predetermined_grid_thw = [(16, 16), (16, 16)]
result = self.processor.preprocess(
images=images, predetermined_grid_thw=predetermined_grid_thw, do_resize=True
)
self.assertIn("pixel_values", result)
def test_preprocess_patches_reshape_multiple_inputs(self):
"""Test preprocess patches reshape logic (lines 349-381)"""
images = [Image.new("RGB", (224, 224))]
result = self.processor.preprocess(images=images)
self.assertIn("pixel_values", result)
pixel_values = result["pixel_values"]
# Verify shape is correct after reshape
self.assertEqual(len(pixel_values.shape), 2) # Should be [grid_t * grid_h * grid_w, C * psz * psz]
def test_smart_resize_high_aspect_ratio_height_gt_width_case(self):
"""Test smart_resize with high aspect ratio, height > width (lines 557-563)"""
# Create image with very high aspect ratio
height, width = 1000, 50 # Aspect ratio = 20
factor = 14
min_pixels = 1000
max_pixels = 100000
new_h, new_w = smart_resize(height, width, factor, min_pixels, max_pixels)
self.assertIsInstance(new_h, int)
self.assertIsInstance(new_w, int)
self.assertGreater(new_h, 0)
self.assertGreater(new_w, 0)
def test_smart_resize_high_aspect_ratio_width_gt_height_case(self):
"""Test smart_resize with high aspect ratio, width > height (lines 562-563)"""
# Create image with very high aspect ratio (wide)
height, width = 50, 1000 # Aspect ratio = 20
factor = 14
min_pixels = 1000
max_pixels = 100000
new_h, new_w = smart_resize(height, width, factor, min_pixels, max_pixels)
self.assertIsInstance(new_h, int)
self.assertIsInstance(new_w, int)
def test_smart_resize_exceeds_max_pixels(self):
"""Test smart_resize when h_bar * w_bar > max_pixels (lines 575-578)"""
height, width = 10000, 10000 # Very large image
factor = 14
min_pixels = 1000
max_pixels = 10000 # Small max_pixels
new_h, new_w = smart_resize(height, width, factor, min_pixels, max_pixels)
self.assertLessEqual(new_h * new_w, max_pixels)
self.assertGreaterEqual(new_h * new_w, min_pixels)
def test_smart_resize_below_min_pixels(self):
"""Test smart_resize when h_bar * w_bar < min_pixels (lines 579-582)"""
height, width = 10, 10 # Very small image
factor = 14
min_pixels = 10000 # Large min_pixels
max_pixels = 100000
new_h, new_w = smart_resize(height, width, factor, min_pixels, max_pixels)
self.assertGreaterEqual(new_h * new_w, min_pixels)
self.assertLessEqual(new_h * new_w, max_pixels)
def test_smart_resize_invalid_result_constraints(self):
"""Test smart_resize with invalid result (line 585)"""
# This is hard to trigger, but we can test the validation
height, width = 100, 100
factor = 14
min_pixels = 10000
max_pixels = 1000 # max < min, which is invalid but should be caught
# This should raise an error or return valid values
try:
new_h, new_w = smart_resize(height, width, factor, min_pixels, max_pixels)
# If it doesn't raise, verify the result is valid
self.assertGreaterEqual(new_h * new_w, min_pixels)
self.assertLessEqual(new_h * new_w, max_pixels)
except ValueError:
# Expected if validation catches the issue
pass
def test_preprocess_videos_loop_numpy_output(self):
"""Test preprocess videos loop (lines 496-521)"""
videos = [
[Image.new("RGB", (224, 224)) for _ in range(4)],
[Image.new("RGB", (224, 224)) for _ in range(4)],
]
result = self.processor.preprocess(images=None, videos=videos)
self.assertIn("pixel_values_videos", result)
self.assertIn("video_grid_thw", result)
self.assertIsInstance(result["pixel_values_videos"], np.ndarray)
def test_preprocess_both_images_and_videos_full_outputs(self):
"""Test preprocess with both images and videos (lines 458-523)
Note: Current implementation has a known issue where the data dict is overwritten
when processing both images and videos. The video processing overwrites the image
results, so only video outputs are returned.
"""
images = [Image.new("RGB", (224, 224))]
videos = [[Image.new("RGB", (224, 224)) for _ in range(4)]]
result = self.processor.preprocess(images=images, videos=videos)
# Due to implementation, only video results are returned when both are provided
self.assertIn("pixel_values_videos", result)
self.assertIn("video_grid_thw", result)
def test_preprocess_images_loop_with_predetermined_grid_thw(self):
"""Test preprocess images loop with predetermined_grid_thw (lines 468-486)
Note: predetermined_grid_thw expects (height, width) tuples, not (t, h, w).
"""
images = [Image.new("RGB", (224, 224)) for _ in range(2)]
# Use 2D grid (h, w) format
predetermined_grid_thw = [(16, 16), (16, 16)]
result = self.processor.preprocess(
images=images, predetermined_grid_thw=predetermined_grid_thw, do_resize=True
)
self.assertIn("pixel_values", result)
self.assertEqual(len(result["image_grid_thw"]), 2)
def test_preprocess_invalid_images_check_list_input(self):
"""Test preprocess with invalid images check (line 464)
Note: The error is raised by make_batched_images before valid_images check,
so the error message is different.
"""
invalid_images = ["not an image", "also not an image"]
with self.assertRaises(ValueError) as context:
self.processor.preprocess(images=invalid_images)
self.assertIn("Could not make batched images", str(context.exception))
def test_round_by_factor_edge_cases(self):
"""Test round_by_factor with edge cases (lines 526-530)"""
self.assertEqual(round_by_factor(0, 14), 0)
self.assertEqual(round_by_factor(14, 14), 14)
self.assertEqual(round_by_factor(13, 14), 14) # Round up
self.assertEqual(round_by_factor(15, 14), 14) # Round down
def test_ceil_by_factor_edge_cases(self):
"""Test ceil_by_factor with edge cases (lines 532-536)"""
self.assertEqual(ceil_by_factor(0, 14), 0)
self.assertEqual(ceil_by_factor(14, 14), 14)
self.assertEqual(ceil_by_factor(13, 14), 14) # Ceil up
self.assertEqual(ceil_by_factor(15, 14), 28) # Ceil up to next multiple
def test_floor_by_factor_edge_cases(self):
"""Test floor_by_factor with edge cases (lines 538-542)"""
self.assertEqual(floor_by_factor(0, 14), 0)
self.assertEqual(floor_by_factor(14, 14), 14)
self.assertEqual(floor_by_factor(13, 14), 0) # Floor down
self.assertEqual(floor_by_factor(15, 14), 14) # Floor down to multiple
self.assertEqual(floor_by_factor(28, 14), 28) # Exact multiple
if __name__ == "__main__":
unittest.main()