DOC GH22893 Fix docstring of groupby in pandas/core/generic.py (#22920) · TomAugspurger/pandas@b0f9a10 (original) (raw)
`@@ -7034,8 +7034,12 @@ def clip_lower(self, threshold, axis=None, inplace=False):
`
7034
7034
`def groupby(self, by=None, axis=0, level=None, as_index=True, sort=True,
`
7035
7035
`group_keys=True, squeeze=False, observed=False, **kwargs):
`
7036
7036
`"""
`
7037
``
`-
Group series using mapper (dict or key function, apply given function
`
7038
``
`-
to group, return result as series) or by a series of columns.
`
``
7037
`+
Group DataFrame or Series using a mapper or by a Series of columns.
`
``
7038
+
``
7039
`+
A groupby operation involves some combination of splitting the
`
``
7040
`+
object, applying a function, and combining the results. This can be
`
``
7041
`+
used to group large amounts of data and compute operations on these
`
``
7042
`+
groups.
`
7039
7043
``
7040
7044
` Parameters
`
7041
7045
` ----------
`
`@@ -7048,54 +7052,95 @@ def groupby(self, by=None, axis=0, level=None, as_index=True, sort=True,
`
7048
7052
` values are used as-is determine the groups. A label or list of
`
7049
7053
``` labels may be passed to group by the columns in self. Notice
```
7050
7054
` that a tuple is interpreted a (single) key.
`
7051
``
`-
axis : int, default 0
`
``
7055
`+
axis : {0 or 'index', 1 or 'columns'}, default 0
`
``
7056
`+
Split along rows (0) or columns (1).
`
7052
7057
` level : int, level name, or sequence of such, default None
`
7053
7058
` If the axis is a MultiIndex (hierarchical), group by a particular
`
7054
``
`-
level or levels
`
7055
``
`-
as_index : boolean, default True
`
``
7059
`+
level or levels.
`
``
7060
`+
as_index : bool, default True
`
7056
7061
` For aggregated output, return object with group labels as the
`
7057
7062
` index. Only relevant for DataFrame input. as_index=False is
`
7058
``
`-
effectively "SQL-style" grouped output
`
7059
``
`-
sort : boolean, default True
`
``
7063
`+
effectively "SQL-style" grouped output.
`
``
7064
`+
sort : bool, default True
`
7060
7065
` Sort group keys. Get better performance by turning this off.
`
7061
7066
` Note this does not influence the order of observations within each
`
7062
``
`-
group. groupby preserves the order of rows within each group.
`
7063
``
`-
group_keys : boolean, default True
`
7064
``
`-
When calling apply, add group keys to index to identify pieces
`
7065
``
`-
squeeze : boolean, default False
`
7066
``
`-
reduce the dimensionality of the return type if possible,
`
7067
``
`-
otherwise return a consistent type
`
7068
``
`-
observed : boolean, default False
`
7069
``
`-
This only applies if any of the groupers are Categoricals
`
``
7067
`+
group. Groupby preserves the order of rows within each group.
`
``
7068
`+
group_keys : bool, default True
`
``
7069
`+
When calling apply, add group keys to index to identify pieces.
`
``
7070
`+
squeeze : bool, default False
`
``
7071
`+
Reduce the dimensionality of the return type if possible,
`
``
7072
`+
otherwise return a consistent type.
`
``
7073
`+
observed : bool, default False
`
``
7074
`+
This only applies if any of the groupers are Categoricals.
`
7070
7075
` If True: only show observed values for categorical groupers.
`
7071
7076
` If False: show all values for categorical groupers.
`
7072
7077
``
7073
7078
` .. versionadded:: 0.23.0
`
7074
7079
``
``
7080
`+
**kwargs
`
``
7081
`+
Optional, only accepts keyword argument 'mutated' and is passed
`
``
7082
`+
to groupby.
`
``
7083
+
7075
7084
` Returns
`
7076
7085
` -------
`
7077
``
`-
GroupBy object
`
``
7086
`+
DataFrameGroupBy or SeriesGroupBy
`
``
7087
`+
Depends on the calling object and returns groupby object that
`
``
7088
`+
contains information about the groups.
`
7078
7089
``
7079
``
`-
Examples
`
``
7090
`+
See Also
`
7080
7091
` --------
`
7081
``
`-
DataFrame results
`
7082
``
-
7083
``
`-
data.groupby(func, axis=0).mean()
`
7084
``
`-
data.groupby(['col1', 'col2'])['col3'].mean()
`
7085
``
-
7086
``
`-
DataFrame with hierarchical index
`
7087
``
-
7088
``
`-
data.groupby(['col1', 'col2']).mean()
`
``
7092
`+
resample : Convenience method for frequency conversion and resampling
`
``
7093
`+
of time series.
`
7089
7094
``
7090
7095
` Notes
`
7091
7096
` -----
`
7092
7097
`` See the `user guide
``
7093
7098
`` http://pandas.pydata.org/pandas-docs/stable/groupby.html`_ for more.
``
7094
7099
``
7095
``
`-
See also
`
``
7100
`+
Examples
`
7096
7101
` --------
`
7097
``
`-
resample : Convenience method for frequency conversion and resampling
`
7098
``
`-
of time series.
`
``
7102
`+
df = pd.DataFrame({'Animal' : ['Falcon', 'Falcon',
`
``
7103
`+
... 'Parrot', 'Parrot'],
`
``
7104
`+
... 'Max Speed' : [380., 370., 24., 26.]})
`
``
7105
`+
df
`
``
7106
`+
Animal Max Speed
`
``
7107
`+
0 Falcon 380.0
`
``
7108
`+
1 Falcon 370.0
`
``
7109
`+
2 Parrot 24.0
`
``
7110
`+
3 Parrot 26.0
`
``
7111
`+
df.groupby(['Animal']).mean()
`
``
7112
`+
Max Speed
`
``
7113
`+
Animal
`
``
7114
`+
Falcon 375.0
`
``
7115
`+
Parrot 25.0
`
``
7116
+
``
7117
`+
Hierarchical Indexes
`
``
7118
+
``
7119
`+
We can groupby different levels of a hierarchical index
`
``
7120
`` +
using the level parameter:
``
``
7121
+
``
7122
`+
arrays = [['Falcon', 'Falcon', 'Parrot', 'Parrot'],
`
``
7123
`+
... ['Capitve', 'Wild', 'Capitve', 'Wild']]
`
``
7124
`+
index = pd.MultiIndex.from_arrays(arrays, names=('Animal', 'Type'))
`
``
7125
`+
df = pd.DataFrame({'Max Speed' : [390., 350., 30., 20.]},
`
``
7126
`+
... index=index)
`
``
7127
`+
df
`
``
7128
`+
Max Speed
`
``
7129
`+
Animal Type
`
``
7130
`+
Falcon Capitve 390.0
`
``
7131
`+
Wild 350.0
`
``
7132
`+
Parrot Capitve 30.0
`
``
7133
`+
Wild 20.0
`
``
7134
`+
df.groupby(level=0).mean()
`
``
7135
`+
Max Speed
`
``
7136
`+
Animal
`
``
7137
`+
Falcon 370.0
`
``
7138
`+
Parrot 25.0
`
``
7139
`+
df.groupby(level=1).mean()
`
``
7140
`+
Max Speed
`
``
7141
`+
Type
`
``
7142
`+
Capitve 210.0
`
``
7143
`+
Wild 185.0
`
7099
7144
` """
`
7100
7145
`from pandas.core.groupby.groupby import groupby
`
7101
7146
``