GitHub - WisconsinAIVision/UniversalFakeDetect (original) (raw)

Detecting fake images

Towards Universal Fake Image Detectors that Generalize Across Generative Models
Utkarsh Ojha*, Yuheng Li*, Yong Jae Lee
(*Equal contribution)
CVPR 2023

[Project Page] [Paper]

>
Using images from one type of generative model (e.g., GAN), detect fake images from other breeds (e.g., Diffusion models)

Contents

Setup

  1. Clone this repository

git clone https://github.com/Yuheng-Li/UniversalFakeDetect cd UniversalFakeDetect

  1. Install the necessary libraries

pip install torch torchvision

Data


datasets
└── test					
      ├── progan	
      │── cyclegan   	
      │── biggan
      │      .
      │      .
      

Evaluation

python validate.py --arch=CLIP:ViT-L/14 --ckpt=pretrained_weights/fc_weights.pth --result_folder=clip_vitl14

python validate.py --arch=CLIP:ViT-L/14 --ckpt=pretrained_weights/fc_weights.pth --result_folder=clip_vitl14 --real_path datasets/test/progan/0_real --fake_path datasets/test/progan/1_fake

Note that if no arguments are provided for real_path and fake_path, the script will perform the evaluation on all the domains specified in dataset_paths.py.

Training

datasets
└── train			
      └── progan			
           ├── airplane
           │── bird
           │── boat
           │      .
           │      .

python train.py --name=clip_vitl14 --wang2020_data_path=datasets/ --data_mode=wang2020 --arch=CLIP:ViT-L/14 --fix_backbone

Acknowledgement

We would like to thank Sheng-Yu Wang for releasing the real/fake images from different generative models. Our training pipeline is also inspired by his open-source code. We would also like to thank CompVis for releasing the pre-trained LDMs and LAION for open-sourcing LAION-400M dataset.

Citation

If you find our work helpful in your research, please cite it using the following:

@inproceedings{ojha2023fakedetect, title={Towards Universal Fake Image Detectors that Generalize Across Generative Models}, author={Ojha, Utkarsh and Li, Yuheng and Lee, Yong Jae}, booktitle={CVPR}, year={2023}, }