GitHub - devind-team/graphene-django-filter: Advanced filters for Graphene (original) (raw)
Graphene-Django-Filter
This package contains advanced filters for graphene-django. The standard filtering feature in graphene-django relies on the django-filterlibrary and therefore provides the flat API without the ability to use logical operators such asand
, or
and not
. This library makes the API nested and adds logical expressions by extension of the DjangoFilterConnectionField
field and the FilterSet
class. Also, the library provides some other convenient filtering features.
Installation
pip
pip install graphene-django-filter
poetry
poetry add graphene-django-filter
Requirements
- Python (3.7, 3.8, 3.9, 3.10)
- Graphene-Django (2.15)
Features
Nested API with the ability to use logical operators
To use, simply replace all DjangoFilterConnectionField
fields withAdvancedDjangoFilterConnectionField
fields in your queries. Also,if you create custom FilterSets, replace the inheritance from the FilterSet
class with the inheritance from the AdvancedFilterSet
class. For example, the following task query exposes the old flat API.
import graphene from django_filters import FilterSet from graphene_django import DjangoObjectType from graphene_django.filter import DjangoFilterConnectionField
class TaskFilter(FilterSet): class Meta: model = Task fields = { 'name': ('exact', 'contains'), 'user__email': ('exact', 'contains'), 'user__first_name': ('exact', 'contains'), 'user__last_name': ('exact', 'contains'), }
class UserType(DjangoObjectType): class Meta: model = User interfaces = (graphene.relay.Node,) fields = 'all'
class TaskType(DjangoObjectType): user = graphene.Field(UserType)
class Meta:
model = Task
interfaces = (graphene.relay.Node,)
fields = '__all__'
filterset_class = TaskFilter
class Query(graphene.ObjectType): tasks = DjangoFilterConnectionField(TaskType)
The flat API in which all filters are applied using the and
operator looks like this.
{ tasks( name_Contains: "important" user_Email_Contains: "john" user_FirstName: "John" user_LastName: "Dou" ){ edges { node { id name } } } }
After replacing the field class with the AdvancedDjangoFilterConnectionField
and the FilterSet
class with the AdvancedFilterSet
the API becomes nested with support for logical expressions.
import graphene from graphene_django_filter import AdvancedDjangoFilterConnectionField, AdvancedFilterSet
class TaskFilter(AdvancedFilterSet): class Meta: model = Task fields = { 'name': ('exact', 'contains'), 'user__email': ('exact', 'contains'), 'user__first_name': ('exact', 'contains'), 'user__last_name': ('exact', 'contains'), }
class Query(graphene.ObjectType): tasks = AdvancedDjangoFilterConnectionField(TaskType)
For example, the following query returns tasks which names contain the word "important" or the user's email address contains the word "john" and the user's last name is "Dou" and the first name is not "John". Note that the operators are applied to lookups such as contains
, exact
, etc. at the last level of nesting.
{ tasks( filter: { or: [ {name: {contains: "important"}} { and: [ {user: {email: {contains: "john"}}} {user: {lastName: {exact: "Dou"}}} ] } ] not: { user: {firstName: {exact: "John"}} } } ) { edges { node { id name } } } }
The same result can be achieved with an alternative query structure because within the same object the and
operator is always used.
{ tasks( filter: { or: [ {name: {contains: "important"}} { user: { email: {contains: "john"} lastName: {exact: "Dou"} } } ] not: { user: {firstName: {exact: "John"}} } } ){ edges { node { id name } } } }
The filter input type has the following structure.
input FilterInputType { and: [FilterInputType] or: [FilterInputType] not: FilterInputType ...FieldLookups }
For more examples, see tests.
Full text search
Django provides the APIfor PostgreSQL full text search. Graphene-Django-Filter inject this API into the GraphQL filter API. To use, add full_text_search
lookup to fields for which you want to enable full text search. For example, the following type has full text search forfirst_name
and last_name
fields.
import graphene from graphene_django import DjangoObjectType from graphene_django_filter import AdvancedDjangoFilterConnectionField
class UserType(DjangoObjectType): class Meta: model = User interfaces = (graphene.relay.Node,) fields = 'all' filter_fields = { 'email': ('exact', 'startswith', 'contains'), 'first_name': ('exact', 'contains', 'full_text_search'), 'last_name': ('exact', 'contains', 'full_text_search'), }
class Query(graphene.ObjectType): users = AdvancedDjangoFilterConnectionField(UserType)
Since this feature belongs to the AdvancedFilterSet, it can be used in a custom FilterSet. The following example will work exactly like the previous one.
import graphene from graphene_django import DjangoObjectType from graphene_django_filter import AdvancedDjangoFilterConnectionField, AdvancedFilterSet
class UserFilter(AdvancedFilterSet): class Meta: model = User fields = { 'email': ('exact', 'startswith', 'contains'), 'first_name': ('exact', 'contains', 'full_text_search'), 'last_name': ('exact', 'contains', 'full_text_search'), }
class UserType(DjangoObjectType): class Meta: model = User interfaces = (graphene.relay.Node,) fields = 'all' filterset_class = UserFilter
class Query(graphene.ObjectType): users = AdvancedDjangoFilterConnectionField(UserType)
Full text search API includes SearchQuery, SearchRank, and Trigram filters. SearchQuery and SearchRank filters are at the top level. If some field has been enabled for full text search then it can be included in the field array. The following queries show an example of using the SearchQuery and SearchRank filters.
{
users(
filter: {
searchQuery: {
vector: {
fields: ["first_name"]
}
query: {
or: [
{value: "Bob"}
{value: "Alice"}
]
}
}
}
){
edges {
node {
id
firstName
lastName
}
}
}
}
{
users(
filter: {
searchRank: {
vector: {fields: ["first_name", "last_name"]}
query: {value: "John Dou"}
lookups: {gte: 0.5}
}
}
){
edges {
node {
id
firstName
lastName
}
}
}
}
Trigram filter belongs to the corresponding field. The following query shows an example of using the Trigram filter.
{
users(
filter: {
firstName: {
trigram: {
value: "john"
lookups: {gte: 0.85}
}
}
}
){
edges {
node {
id
firstName
lastName
}
}
}
}
Input types have the following structure.
input SearchConfigInputType { value: String! isField: Boolean } enum SearchVectorWeight { A B C D } input SearchVectorInputType { fields: [String!]! config: SearchConfigInputType weight: SearchVectorWeight } enum SearchQueryType { PLAIN PHRASE RAW WEBSEARCH } input SearchQueryInputType { value: String config: SearchConfigInputType and: [SearchQueryInputType] or: [SearchQueryInputType] not: SearchQueryInputType } input SearchQueryFilterInputType { vector: SearchVectorInputType! query: SearchQueryInputType! } input FloatLookupsInputType { exact: Float gt: Float gte: Float lt: Float lte: Float } input SearchRankWeightsInputType { D: Float C: Float B: Float A: Float } input SearchRankFilterInputType { vector: SearchVectorInputType! query: SearchQueryInputType! lookups: FloatLookupsInputType! weights: SearchRankWeightsInputType coverDensity: Boolean normalization: Int } enum TrigramSearchKind { SIMILARITY DISTANCE } input TrigramFilterInputType { kind: TrigramSearchKind lookups: FloatLookupsInputType! value: String! }
For more examples, see tests.
Settings
The library can be customised using settings. To add settings, create a dictionary with name GRAPHENE_DJANGO_FILTER
in the project’s settings.py
. The default settings are as follows.
GRAPHENE_DJANGO_FILTER = { 'FILTER_KEY': 'filter', 'AND_KEY': 'and', 'OR_KEY': 'or', 'NOT_KEY': 'not', }
To read the settings, import them from the conf
module.
from graphene_django_filter.conf import settings
print(settings.FILTER_KEY)
The settings
object also includes fixed settings, which depend on the user's environment.IS_POSTGRESQL
determinate that current database is PostgreSQL and HAS_TRIGRAM_EXTENSION
that pg_trgm
extension is installed.