GitHub - huggingface/huggingface.js: Utilities to use the Hugging Face Hub API (original) (raw)
// Programmatically interact with the Hub
await createRepo({ repo: { type: "model", name: "my-user/nlp-model" }, accessToken: HF_TOKEN });
await uploadFile({ repo: "my-user/nlp-model", accessToken: HF_TOKEN, // Can work with native File in browsers file: { path: "pytorch_model.bin", content: new Blob(...) } });
// Use all supported Inference Providers!
await inference.chatCompletion({ model: "meta-llama/Llama-3.1-8B-Instruct", provider: "sambanova", // or together, fal-ai, replicate, cohere … messages: [ { role: "user", content: "Hello, nice to meet you!", }, ], max_tokens: 512, temperature: 0.5, });
await inference.textToImage({ model: "black-forest-labs/FLUX.1-dev", provider: "replicate", inputs: "a picture of a green bird", });
// and much more…
Hugging Face JS libraries
This is a collection of JS libraries to interact with the Hugging Face API, with TS types included.
- @huggingface/inference: Use all supported (serverless) Inference Providers or switch to Inference Endpoints (dedicated) to make calls to 100,000+ Machine Learning models
- @huggingface/hub: Interact with huggingface.co to create or delete repos and commit / download files
- @huggingface/agents: Interact with HF models through a natural language interface
- @huggingface/gguf: A GGUF parser that works on remotely hosted files.
- @huggingface/dduf: Similar package for DDUF (DDUF Diffusers Unified Format)
- @huggingface/tasks: The definition files and source-of-truth for the Hub's main primitives like pipeline tasks, model libraries, etc.
- @huggingface/jinja: A minimalistic JS implementation of the Jinja templating engine, to be used for ML chat templates.
- @huggingface/space-header: Use the Space
mini_header
outside Hugging Face - @huggingface/ollama-utils: Various utilities for maintaining Ollama compatibility with models on the Hugging Face Hub.
We use modern features to avoid polyfills and dependencies, so the libraries will only work on modern browsers / Node.js >= 18 / Bun / Deno.
The libraries are still very young, please help us by opening issues!
Installation
From NPM
To install via NPM, you can download the libraries as needed:
npm install @huggingface/inference npm install @huggingface/hub npm install @huggingface/agents
Then import the libraries in your code:
import { InferenceClient } from "@huggingface/inference"; import { HfAgent } from "@huggingface/agents"; import { createRepo, commit, deleteRepo, listFiles } from "@huggingface/hub"; import type { RepoId } from "@huggingface/hub";
From CDN or Static hosting
You can run our packages with vanilla JS, without any bundler, by using a CDN or static hosting. Using ES modules, i.e. <script type="module">
, you can import the libraries in your code:
Deno
// esm.sh import { InferenceClient } from "https://esm.sh/@huggingface/inference" import { HfAgent } from "https://esm.sh/@huggingface/agents";
import { createRepo, commit, deleteRepo, listFiles } from "https://esm.sh/@huggingface/hub" // or npm: import { InferenceClient } from "npm:@huggingface/inference" import { HfAgent } from "npm:@huggingface/agents";
import { createRepo, commit, deleteRepo, listFiles } from "npm:@huggingface/hub"
Usage examples
Get your HF access token in your account settings.
@huggingface/inference examples
import { InferenceClient } from "@huggingface/inference";
const HF_TOKEN = "hf_...";
const client = new InferenceClient(HF_TOKEN);
// Chat completion API const out = await client.chatCompletion({ model: "meta-llama/Llama-3.1-8B-Instruct", messages: [{ role: "user", content: "Hello, nice to meet you!" }], max_tokens: 512 }); console.log(out.choices[0].message);
// Streaming chat completion API for await (const chunk of client.chatCompletionStream({ model: "meta-llama/Llama-3.1-8B-Instruct", messages: [{ role: "user", content: "Hello, nice to meet you!" }], max_tokens: 512 })) { console.log(chunk.choices[0].delta.content); }
/// Using a third-party provider: await client.chatCompletion({ model: "meta-llama/Llama-3.1-8B-Instruct", messages: [{ role: "user", content: "Hello, nice to meet you!" }], max_tokens: 512, provider: "sambanova", // or together, fal-ai, replicate, cohere … })
await client.textToImage({ model: "black-forest-labs/FLUX.1-dev", inputs: "a picture of a green bird", provider: "fal-ai", })
// You can also omit "model" to use the recommended model for the task await client.translation({ inputs: "My name is Wolfgang and I live in Amsterdam", parameters: { src_lang: "en", tgt_lang: "fr", }, });
// pass multimodal files or URLs as inputs await client.imageToText({ model: 'nlpconnect/vit-gpt2-image-captioning', data: await (await fetch('https://picsum.photos/300/300')).blob(), })
// Using your own dedicated inference endpoint: https://hf.co/docs/inference-endpoints/ const gpt2Client = client.endpoint('https://xyz.eu-west-1.aws.endpoints.huggingface.cloud/gpt2'); const { generated_text } = await gpt2Client.textGeneration({ inputs: 'The answer to the universe is' });
// Chat Completion const llamaEndpoint = client.endpoint( "https://router.huggingface.co/hf-inference/models/meta-llama/Llama-3.1-8B-Instruct" ); const out = await llamaEndpoint.chatCompletion({ model: "meta-llama/Llama-3.1-8B-Instruct", messages: [{ role: "user", content: "Hello, nice to meet you!" }], max_tokens: 512, }); console.log(out.choices[0].message);
@huggingface/hub examples
import { createRepo, uploadFile, deleteFiles } from "@huggingface/hub";
const HF_TOKEN = "hf_...";
await createRepo({ repo: "my-user/nlp-model", // or { type: "model", name: "my-user/nlp-test" }, accessToken: HF_TOKEN });
await uploadFile({ repo: "my-user/nlp-model", accessToken: HF_TOKEN, // Can work with native File in browsers file: { path: "pytorch_model.bin", content: new Blob(...) } });
await deleteFiles({ repo: { type: "space", name: "my-user/my-space" }, // or "spaces/my-user/my-space" accessToken: HF_TOKEN, paths: ["README.md", ".gitattributes"] });
@huggingface/agents example
import { HfAgent, LLMFromHub, defaultTools } from '@huggingface/agents';
const HF_TOKEN = "hf_...";
const agent = new HfAgent( HF_TOKEN, LLMFromHub(HF_TOKEN), [...defaultTools] );
// you can generate the code, inspect it and then run it const code = await agent.generateCode("Draw a picture of a cat wearing a top hat. Then caption the picture and read it out loud."); console.log(code); const messages = await agent.evaluateCode(code) console.log(messages); // contains the data
// or you can run the code directly, however you can't check that the code is safe to execute this way, use at your own risk. const messages = await agent.run("Draw a picture of a cat wearing a top hat. Then caption the picture and read it out loud.") console.log(messages);
There are more features of course, check each library's README!
Formatting & testing
sudo corepack enable pnpm install
pnpm -r format:check pnpm -r lint:check pnpm -r test
Building
This will generate ESM and CJS javascript files in packages/*/dist
, eg packages/inference/dist/index.mjs
.