Clustering infrastructure (original) (raw)

Defining a clustering infrastructure, similar to the supervised framework currently available.

Use cases

Algorithms of interest

Interface

Taking kmeans as example, and using the supervised framework as template.

library("pRoloc") library("pRolocdata") data(dunkley2006)

Simple clustering

res <- kmeansClustering(dunkley2006, centers = 9) head(fData(res)$kmeans)

plot2D(res, fcol = "kmeans")

plot of chunk clust

Optimising k

(param <- kmeansOptimisation(dunkley2006))

## Object of class "ClustRegRes"
##  Algorithm: kmeans 
##  Criteria: BIC AIC 
##  Parameters:
##   k : 1 2 ... 19 20

plot of chunk koptim

plot of chunk koptim

fvarLabels(res2 <- kmeansClustering(dunkley2006, param))

## [1] "markers"    "assigned"   "evidence"   "method"     "new"       
## [6] "pd.2013"    "pd.markers" "kmeans"

Optimise to ground truth

kmeansOptimisation(object, fcol), where fcol represents a feature data column with test cluster definitions, and the function would optimise kmeans and its parameter to match the priors. See clue package for criteria.

Compare clustering results

References

Add a custom footer