GitHub - lmweber/nnSVG: nnSVG: scalable method to identify spatially variable genes (SVGs) in spatially-resolved transcriptomics data (original) (raw)

nnSVG

R build status

Overview

nnSVG is a method for scalable identification of spatially variable genes (SVGs) in spatially-resolved transcriptomics data.

The nnSVG method is based on nearest-neighbor Gaussian processes (Datta et al., 2016, Finley et al., 2019) and uses the BRISC algorithm (Saha and Datta, 2018) for model fitting and parameter estimation. nnSVG allows identification and ranking of SVGs with flexible length scales across a tissue slide or within spatial domains defined by covariates. The method scales linearly with the number of spatial locations and can be applied to datasets containing thousands or more spatial locations.

nnSVG is implemented as an R package within the Bioconductor framework, and is available from Bioconductor.

Our paper describing the method is available from Nature Communications.

Installation

The package can be installed from Bioconductor as follows, using R version 4.2 or above:

install.packages("BiocManager") BiocManager::install("nnSVG")

Alternatively, the latest development version of the package can also be installed from GitHub:

remotes::install_github("lmweber/nnSVG")

If you are installing from GitHub, the following dependency packages may need to be installed manually from Bioconductor and CRAN (these are installed automatically if you install from Bioconductor instead):

install.packages("BiocManager") BiocManager::install("SpatialExperiment") BiocManager::install("STexampleData") install.packages("BRISC")

Tutorial

A detailed tutorial is available in the package vignette from Bioconductor. A direct link to the tutorial / package vignette is available here.

Input data format

In the examples below, we assume the input data are provided as a SpatialExperiment Bioconductor object. In this case, the outputs are stored in the rowData of the SpatialExperiment object.

Alternatively, the inputs can also be provided as a numeric matrix of normalized and transformed counts (e.g. log-transformed normalized counts, also known as logcounts) and a numeric matrix of spatial coordinates.

Example workflow

A short example workflow is shown below. This is a modified version of the full tutorial available in the package vignette from Bioconductor. A direct link to the tutorial / package vignette is available here).

Load packages

library(nnSVG) library(STexampleData) library(scran) library(ggplot2)

Load example dataset

load example dataset from STexampleData package

spe <- Visium_humanDLPFC() dim(spe)

Preprocessing

keep spots over tissue

spe <- spe[, colData(spe)$in_tissue == 1] dim(spe)

spot-level quality control: already performed on this example dataset

filter low-expressed and mitochondrial genes

using function from nnSVG package with default filtering parameters

spe <- filter_genes(spe)

Gene filtering: removing mitochondrial genes

removed 13 mitochondrial genes

Gene filtering: retaining genes with at least 3 counts in at least 0.5% (n = 19) of spatial locations

removed 30216 out of 33525 genes due to low expression

calculate logcounts (log-transformed normalized counts) using scran package

using library size factors

spe <- computeLibraryFactors(spe) spe <- logNormCounts(spe) assayNames(spe)

[1] "counts" "logcounts"

Subset data for this example

select small set of random genes and several known SVGs for faster runtime in this example workflow

set.seed(123) ix_random <- sample(seq_len(nrow(spe)), 10) known_genes <- c("MOBP", "PCP4", "SNAP25", "HBB", "IGKC", "NPY") ix_known <- which(rowData(spe)$gene_name %in% known_genes) ix <- c(ix_known, ix_random)

spe <- spe[ix, ] dim(spe)

Run nnSVG

set seed for reproducibility

run nnSVG using a single thread for this example workflow

set.seed(123) spe <- nnSVG(spe, n_threads = 1)

show results

rowData(spe)

DataFrame with 16 rows and 17 columns

[...]

Investigate results

The results are stored in the rowData of the SpatialExperiment object.

The main results of interest are:

number of significant SVGs

table(rowData(spe)$padj <= 0.05)

show results for top n SVGs

n <- 10 rowData(spe)[order(rowData(spe)$rank)[1:n], ]

DataFrame with 10 rows and 17 columns

gene_id gene_name feature_type sigma.sq tau.sq

ENSG00000168314 ENSG00000168314 MOBP Gene Expression 1.38739383 0.364188

ENSG00000132639 ENSG00000132639 SNAP25 Gene Expression 0.43003959 0.430106

ENSG00000211592 ENSG00000211592 IGKC Gene Expression 0.56564845 0.455042

ENSG00000244734 ENSG00000244734 HBB Gene Expression 0.32942113 0.353754

ENSG00000183036 ENSG00000183036 PCP4 Gene Expression 0.23102220 0.452735

ENSG00000122585 ENSG00000122585 NPY Gene Expression 0.28567359 0.280173

ENSG00000129562 ENSG00000129562 DAD1 Gene Expression 0.02389607 0.464723

ENSG00000114923 ENSG00000114923 SLC4A3 Gene Expression 0.01147170 0.237260

ENSG00000133606 ENSG00000133606 MKRN1 Gene Expression 0.00632248 0.272432

ENSG00000143543 ENSG00000143543 JTB Gene Expression 0.07541566 0.463623

phi loglik runtime mean var spcov

ENSG00000168314 1.102018 -3663.60 0.631 0.805525 1.205673 1.462248

ENSG00000132639 3.033847 -3912.70 0.450 3.451926 0.857922 0.189973

ENSG00000211592 20.107022 -4531.64 1.054 0.622937 1.007454 1.207340

ENSG00000244734 27.814098 -4044.96 1.559 0.411262 0.697673 1.395587

ENSG00000183036 8.272278 -4026.22 0.419 0.687961 0.684598 0.698656

ENSG00000122585 71.653290 -3995.23 0.843 0.393975 0.567383 1.356646

ENSG00000129562 10.141894 -3842.24 0.590 0.549318 0.489167 0.281410

ENSG00000114923 12.765645 -2617.36 0.658 0.250768 0.248816 0.427112

ENSG00000133606 0.082764 -2831.51 0.612 0.295404 0.278806 0.269171

ENSG00000143543 119.721419 -4036.28 0.731 0.654919 0.539172 0.419318

prop_sv loglik_lm LR_stat rank pval padj

ENSG00000168314 0.7920804 -5503.33 3679.46397 1 0.00000e+00 0.00000e+00

ENSG00000132639 0.4999614 -4884.19 1942.98556 2 0.00000e+00 0.00000e+00

ENSG00000211592 0.5541822 -5176.53 1289.77508 3 0.00000e+00 0.00000e+00

ENSG00000244734 0.4821910 -4507.99 926.04573 4 0.00000e+00 0.00000e+00

ENSG00000183036 0.3378716 -4473.57 894.68884 5 0.00000e+00 0.00000e+00

ENSG00000122585 0.5048609 -4131.87 273.27818 6 0.00000e+00 0.00000e+00

ENSG00000129562 0.0489053 -3861.98 39.49098 7 2.65854e-09 6.07667e-09

ENSG00000114923 0.0461207 -2632.02 29.31376 8 4.31119e-07 8.62238e-07

ENSG00000133606 0.0226812 -2839.08 15.15227 9 5.12539e-04 9.11181e-04

ENSG00000143543 0.1399077 -4039.07 5.59664 10 6.09124e-02 9.74599e-02

Plot expression of top SVG

Plot expression of the top-ranked SVG.

plot spatial expression of top-ranked SVG

ix <- which(rowData(spe)$rank == 1) ix_name <- rowData(spe)$gene_name[ix] ix_name

df <- as.data.frame(cbind(spatialCoords(spe), expr = counts(spe)[ix, ]))

ggplot(df, aes(x = pxl_col_in_fullres, y = pxl_row_in_fullres, color = expr)) + geom_point(size = 0.8) + coord_fixed() + scale_y_reverse() + scale_color_gradient(low = "gray90", high = "blue", trans = "sqrt", breaks = range(df$expr), name = "counts") + ggtitle(ix_name) + theme_bw() + theme(plot.title = element_text(face = "italic"), panel.grid = element_blank(), axis.title = element_blank(), axis.text = element_blank(), axis.ticks = element_blank())

Spatial expression plot of top-ranked SVG

Citation

Our paper describing nnSVG is available from Nature Communications: