GitHub - mgirlich/tibblify: Rectangle Nested Lists (original) (raw)
tibblify
The goal of tibblify is to provide an easy way of converting a nested list into a tibble.
Installation
You can install the released version of tibblify fromCRAN with:
install.packages("tibblify")
Or install the development version from GitHub with:
install.packages("devtools")
devtools::install_github("mgirlich/tibblify")
Introduction
With tibblify()
you can rectangle deeply nested lists into a tidy tibble. These lists might come from an API in the form of JSON or from scraping XML. The reasons to use tibblify()
over other tools likejsonlite::fromJSON()
or tidyr::hoist()
are:
- It can guess the output format like
jsonlite::fromJSON()
. - You can also provide a specification how to rectangle.
- The specification is easy to understand.
- You can bring most inputs into the shape you want in a single step.
- Rectangling is much faster than with
jsonlite::fromJSON()
.
Example
Let’s start with gh_users
, which is a list containing information about four GitHub users.
library(tibblify)
gh_users_small <- purrr::map(gh_users, ~ .x[c("followers", "login", "url", "name", "location", "email", "public_gists")])
names(gh_users_small[[1]])
#> [1] "followers" "login" "url" "name" "location"
#> [6] "email" "public_gists"
Quickly rectangling gh_users_small
is as easy as applying tibblify()
to it:
tibblify(gh_users_small) #> The spec contains 1 unspecified field: #> • email #> # A tibble: 4 × 7 #> followers login url name location email public_gists #> #> 1 780 jennybc https://api.github.co… Jenn… Vancouv… 54 #> 2 3958 jtleek https://api.github.co… Jeff… Baltimo… 12 #> 3 115 juliasilge https://api.github.co… Juli… Salt La… 4 #> 4 213 leeper https://api.github.co… Thom… London,… 46
We can now look at the specification tibblify()
used for rectangling
guess_tspec(gh_users_small) #> The spec contains 1 unspecified field: #> • email #> tspec_df( #> tib_int("followers"), #> tib_chr("login"), #> tib_chr("url"), #> tib_chr("name"), #> tib_chr("location"), #> tib_unspecified("email"), #> tib_int("public_gists"), #> )
If we are only interested in some of the fields we can easily adapt the specification
spec <- tspec_df( login_name = tib_chr("login"), tib_chr("name"), tib_int("public_gists") )
tibblify(gh_users_small, spec) #> # A tibble: 4 × 3 #> login_name name public_gists #> #> 1 jennybc Jennifer (Jenny) Bryan 54 #> 2 jtleek Jeff L. 12 #> 3 juliasilge Julia Silge 4 #> 4 leeper Thomas J. Leeper 46
Objects
We refer to lists like gh_users_small
as collection and _objects_are the elements of such lists. Objects and collections are the typical input for tibblify()
.
Basically, an object is simply something that can be converted to a one row tibble. This boils down to a condition on the names of the object:
- the
object
must have names (thenames
attribute must not beNULL
), - every element must be named (no name can be
NA
or""
), - and the names must be unique.
In other words, the names must fulfillvec_as_names(repair = "check_unique")
. The name-value pairs of an object are the fields.
For example list(x = 1, y = "a")
is an object with the fields (x, 1)
and (y, "a")
but list(1, z = 3)
is not an object because it is not fully named.
A collection is basically just a list of similar objects so that the fields can become the columns in a tibble.
Specification
Providing an explicit specification has a couple of advantages:
- you can ensure type and shape stability of the resulting tibble in automated scripts.
- you can give the columns different names.
- you can restrict to parsing only the fields you need.
- you can specify what happens if a value is missing.
As seen before the specification for a collection is done withtspec_df()
. The columns of the output tibble are describe with thetib_*()
functions. They describe the path to the field to extract and the output type of the field. There are the following five types of functions:
tib_scalar(ptype)
: a length one vector with typeptype
tib_vector(ptype)
: a vector of arbitrary length with typeptype
tib_variant()
: a vector of arbitrary length and type; you should barely ever need thistib_row(...)
: an object with the fields...
tib_df(...)
: a collection where the objects have the fields...
For convenience there are shortcuts for tib_scalar()
andtib_vector()
for the most common prototypes:
logical()
:tib_lgl()
andtib_lgl_vec()
integer()
:tib_int()
andtib_int_vec()
double()
:tib_dbl()
andtib_dbl_vec()
character()
:tib_chr()
andtib_chr_vec()
Date
:tib_date()
andtib_date_vec()
Date
encoded as character:tib_chr_date()
andtib_chr_date_vec()
Scalar Elements
Scalar elements are the most common case and result in a normal vector column
tibblify( list( list(id = 1, name = "Peter"), list(id = 2, name = "Lilly") ), tspec_df( tib_int("id"), tib_chr("name") ) ) #> # A tibble: 2 × 2 #> id name #> #> 1 1 Peter #> 2 2 Lilly
With tib_scalar()
you can also provide your own prototype
Let’s say you have a list with durations
x <- list( list(id = 1, duration = vctrs::new_duration(100)), list(id = 2, duration = vctrs::new_duration(200)) ) x #> [[1]] #> [[1]]$id #> [1] 1 #> #> [[1]]$duration #> Time difference of 100 secs #> #> #> [[2]] #> [[2]]$id #> [1] 2 #> #> [[2]]$duration #> Time difference of 200 secs
and then use it in tib_scalar()
tibblify(
x,
tspec_df(
tib_int("id"),
tib_scalar("duration", ptype = vctrs::new_duration())
)
)
#> # A tibble: 2 × 2
#> id duration
#>
#> 1 1 100 secs
#> 2 2 200 secs
Vector Elements
If an element does not always have size one then it is a vector element. If it still always has the same type ptype
then it produces a list ofptype
column:
x <- list( list(id = 1, children = c("Peter", "Lilly")), list(id = 2, children = "James"), list(id = 3, children = c("Emma", "Noah", "Charlotte")) )
tibblify( x, tspec_df( tib_int("id"), tib_chr_vec("children") ) ) #> # A tibble: 3 × 2 #> id children #> <list> #> 1 1 [2] #> 2 2 [1] #> 3 3 [3]
You can usetidyr::unnest() ortidyr::unnest_longer()to flatten these columns to regular columns.
Object Elements
For example in gh_repos_small
gh_repos_small <- purrr::map(gh_repos, ~ .x[c("id", "name", "owner")]) gh_repos_small <- purrr::map( gh_repos_small, function(repo) { repo$owner <- repo$owner[c("login", "id", "url")] repo } )
gh_repos_small[[1]] #> $id #> [1] 61160198 #> #> $name #> [1] "after" #> #> $owner #> ownerownerownerlogin #> [1] "gaborcsardi" #> #> ownerownerownerid #> [1] 660288 #> #> ownerownerownerurl #> [1] "https://api.github.com/users/gaborcsardi"
the field owner
is an object itself. The specification to extract it uses tib_row()
spec <- guess_tspec(gh_repos_small) spec #> tspec_df( #> tib_int("id"), #> tib_chr("name"), #> tib_row( #> "owner", #> tib_chr("login"), #> tib_int("id"), #> tib_chr("url"), #> ), #> )
and results in a tibble column
tibblify(gh_repos_small, spec)
#> # A tibble: 30 × 3
#> id name owner$login idid idurl
#>
#> 1 61160198 after gaborcsardi 660288 https://api.github.com/users/gaborcs…
#> 2 40500181 argufy gaborcsardi 660288 https://api.github.com/users/gaborcs…
#> 3 36442442 ask gaborcsardi 660288 https://api.github.com/users/gaborcs…
#> 4 34924886 baseimports gaborcsardi 660288 https://api.github.com/users/gaborcs…
#> 5 61620661 citest gaborcsardi 660288 https://api.github.com/users/gaborcs…
#> 6 33907457 clisymbols gaborcsardi 660288 https://api.github.com/users/gaborcs…
#> 7 37236467 cmaker gaborcsardi 660288 https://api.github.com/users/gaborcs…
#> 8 67959624 cmark gaborcsardi 660288 https://api.github.com/users/gaborcs…
#> 9 63152619 conditions gaborcsardi 660288 https://api.github.com/users/gaborcs…
#> 10 24343686 crayon gaborcsardi 660288 https://api.github.com/users/gaborcs…
#> # ℹ 20 more rows
If you don’t like the tibble column you can unpack it withtidyr::unpack()
. Alternatively, if you only want to extract some of the fields in owner
you can use a nested path
spec2 <- tspec_df( id = tib_int("id"), name = tib_chr("name"), owner_id = tib_int(c("owner", "id")), owner_login = tib_chr(c("owner", "login")) ) spec2 #> tspec_df( #> tib_int("id"), #> tib_chr("name"), #> owner_id = tib_int(c("owner", "id")), #> owner_login = tib_chr(c("owner", "login")), #> )
tibblify(gh_repos_small, spec2)
#> # A tibble: 30 × 4
#> id name owner_id owner_login
#>
#> 1 61160198 after 660288 gaborcsardi
#> 2 40500181 argufy 660288 gaborcsardi
#> 3 36442442 ask 660288 gaborcsardi
#> 4 34924886 baseimports 660288 gaborcsardi
#> 5 61620661 citest 660288 gaborcsardi
#> 6 33907457 clisymbols 660288 gaborcsardi
#> 7 37236467 cmaker 660288 gaborcsardi
#> 8 67959624 cmark 660288 gaborcsardi
#> 9 63152619 conditions 660288 gaborcsardi
#> 10 24343686 crayon 660288 gaborcsardi
#> # ℹ 20 more rows
Required and Optional Fields
Objects usually have some fields that always exist and some that are optional. By default tib_*()
demands that a field exists
x <- list( list(x = 1, y = "a"), list(x = 2) )
spec <- tspec_df( x = tib_int("x"), y = tib_chr("y") )
tibblify(x, spec)
#> Error in tibblify()
:
#> ! Field y is required but does not exist in x[[2]]
.
#> ℹ Use required = FALSE
if the field is optional.
You can mark a field as optional with the argument required = FALSE
:
spec <- tspec_df( x = tib_int("x"), y = tib_chr("y", required = FALSE) )
tibblify(x, spec)
#> # A tibble: 2 × 2
#> x y
#>
#> 1 1 a
#> 2 2
You can specify the value to use with the fill
argument
spec <- tspec_df( x = tib_int("x"), y = tib_chr("y", required = FALSE, fill = "missing") )
tibblify(x, spec)
#> # A tibble: 2 × 2
#> x y
#>
#> 1 1 a
#> 2 2 missing
Converting a Single Object
To rectangle a single object you have two options: tspec_object()
which produces a list or tspec_row()
which produces a tibble with one row.
While tibbles are great for a single object it often makes more sense to convert them to a list.
For example a typical API response might be something like
api_output <- list( status = "success", requested_at = "2021-10-26 09:17:12", data = list( list(x = 1), list(x = 2) ) )
To convert to a one row tibble
row_spec <- tspec_row( status = tib_chr("status"), data = tib_df( "data", x = tib_int("x") ) )
api_output_df <- tibblify(api_output, row_spec) api_output_df #> # A tibble: 1 × 2 #> status data #> <list<tibble[,1]>> #> 1 success [2 × 1]
it is necessary to wrap data
in a list. To access data
one has to use api_output_df$data[[1]]
which is not very nice.
object_spec <- tspec_object( status = tib_chr("status"), data = tib_df( "data", x = tib_int("x") ) )
api_output_list <- tibblify(api_output, object_spec) api_output_list #> $status #> [1] "success" #> #> $data #> # A tibble: 2 × 1 #> x #> #> 1 1 #> 2 2
Now accessing data
does not required an extra subsetting step
api_output_list$data #> # A tibble: 2 × 1 #> x #> #> 1 1 #> 2 2
Code of Conduct
Please note that the tibblify project is released with a Contributor Code of Conduct. By contributing to this project, you agree to abide by its terms.