GitHub - mhahsler/stream: A framework for data stream modeling and associated data mining tasks such as clustering and classification. - R Package (original) (raw)

R package stream - Infrastructure for Data Stream Mining

r-universe status Package on CRAN CRAN RStudio mirror downloads

Introduction

The package provides support for modeling and simulating data streams as well as an extensible framework for implementing, interfacing and experimenting with algorithms for various data stream mining tasks. The main advantage of stream is that it seamlessly integrates with the large existing infrastructure provided by R. The package provides:

Additional packages in the stream family are:

To cite package ‘stream’ in publications use:

Hahsler M, Bolaños M, Forrest J (2017). “Introduction to stream: An Extensible Framework for Data Stream Clustering Research with R.”Journal of Statistical Software, 76(14), 1-50. doi:10.18637/jss.v076.i14 https://doi.org/10.18637/jss.v076.i14.

@Article{,
  title = {Introduction to {stream}: An Extensible Framework for Data Stream Clustering Research with {R}},
  author = {Michael Hahsler and Matthew Bola{\~n}os and John Forrest},
  journal = {Journal of Statistical Software},
  year = {2017},
  volume = {76},
  number = {14},
  pages = {1--50},
  doi = {10.18637/jss.v076.i14},
}

Installation

Stable CRAN version: Install from within R with

install.packages("stream")

Current development version: Install fromr-universe.

install.packages("stream", repos = c("https://mhahsler.r-universe.dev", "https://cloud.r-project.org/"))

Usage

Load the package and a random data stream with 3 Gaussian clusters and 10% noise and scale the data to z-scores.

library("stream") set.seed(2000)

stream <- DSD_Gaussians(k = 3, d = 2, noise = 0.1) %>% DSF_Scale() get_points(stream, n = 5)

##       X1     X2 .class
## 1 -0.267 -0.802      2
## 2  0.531  1.078     NA
## 3 -0.706  1.427      3
## 4 -0.781  1.355      3
## 5  1.170 -0.712      1

Cluster a stream of 1000 points using D-Stream which estimates point density in grid cells.

dsc <- DSC_DStream(gridsize = 0.1) update(dsc, stream, 1000) plot(dsc, stream, grid = TRUE)

evaluate_static(dsc, stream, n = 100)

## Evaluation results for micro-clusters.
## Points were assigned to micro-clusters.
## 
##             numPoints      numMicroClusters      numMacroClusters 
##              100.0000               65.0000                3.0000 
##        noisePredicted                   SSQ            silhouette 
##               23.0000                0.1696                0.0786 
##       average.between        average.within          max.diameter 
##                1.7809                0.5816                3.9368 
##        min.separation ave.within.cluster.ss                    g2 
##                0.0146                0.5217                0.1596 
##          pearsongamma                  dunn                 dunn2 
##                0.0637                0.0037                0.0154 
##               entropy              wb.ratio            numClasses 
##                3.1721                0.3266                4.0000 
##           noiseActual        noisePrecision        outlierJaccard 
##               16.0000                0.6957                0.6957 
##             precision                recall                    F1 
##                0.6170                0.1618                0.2563 
##                purity             Euclidean             Manhattan 
##                0.9920                0.1633                0.3000 
##                  Rand                 cRand                   NMI 
##                0.7620                0.1688                0.5551 
##                    KP                 angle                  diag 
##                0.2651                0.3000                0.3000 
##                    FM               Jaccard                    PS 
##                0.3159                0.1470                0.0541 
##                    vi 
##                2.2264 
## attr(,"type")
## [1] "micro"
## attr(,"assign")
## [1] "micro"

Outlier detection using DBSTREAM which uses micro-clusters with a given radius.

dso <- DSOutlier_DBSTREAM(r = 0.1) update(dso, stream, 1000) plot(dso, stream)

evaluate_static(dso, stream, n = 100, measure = c("numPoints", "noiseActual", "noisePredicted", "noisePrecision"))

## Evaluation results for micro-clusters.
## Points were assigned to micro-clusters.
## 
##      numPoints    noiseActual noisePredicted noisePrecision 
##            100              7              7              1 
## attr(,"type")
## [1] "micro"
## attr(,"assign")
## [1] "micro"

Preparing complete stream process pipelines that can be run using a single update() call.

pipeline <- DSD_Gaussians(k = 3, d = 2, noise = 0.1) %>% DSF_Scale() %>% DST_Runner(DSC_DStream(gridsize = 0.1)) pipeline

## DST pipline runner
## DSD: Gaussian Mixture (d = 2, k = 3)
## + scaled
## DST: D-Stream 
## Class: DST_Runner, DST

update(pipeline, n = 500) pipeline$dst

## D-Stream 
## Class: DSC_DStream, DSC_Micro, DSC_R, DSC 
## Number of micro-clusters: 160 
## Number of macro-clusters: 13

Acknowledgments

The development of the stream package was supported in part by NSF IIS-0948893, NSF CMMI 1728612, and NIH R21HG005912.

References