GitHub - nomic-ai/gpt4all: GPT4All: Run Local LLMs on Any Device. Open-source and available for commercial use. (original) (raw)

GPT4All

WebsiteDocumentationDiscordYouTube Tutorial

GPT4All runs large language models (LLMs) privately on everyday desktops & laptops.

No API calls or GPUs required - you can just download the application and get started.

Read about what's new in our blog.

Subscribe to the newsletter

gpt4all_2.mp4

GPT4All is made possible by our compute partner Paperspace.

Windows Installer

macOS Installer

Ubuntu Installer

Windows and Linux require Intel Core i3 2nd Gen / AMD Bulldozer, or better. x86-64 only, no ARM.

macOS requires Monterey 12.6 or newer. Best results with Apple Silicon M-series processors.

See the full System Requirements for more details.

Get it on Flathub Flathub (community maintained)

Install GPT4All Python

gpt4all gives you access to LLMs with our Python client around llama.cpp implementations.

Nomic contributes to open source software like llama.cpp to make LLMs accessible and efficient for all.

from gpt4all import GPT4All model = GPT4All("Meta-Llama-3-8B-Instruct.Q4_0.gguf") # downloads / loads a 4.66GB LLM with model.chat_session(): print(model.generate("How can I run LLMs efficiently on my laptop?", max_tokens=1024))

Integrations

🦜🔗 Langchain🗃️ Weaviate Vector Database - module docs🔭 OpenLIT (OTel-native Monitoring) - Docs

Release History

Contributing

GPT4All welcomes contributions, involvement, and discussion from the open source community! Please see CONTRIBUTING.md and follow the issues, bug reports, and PR markdown templates.

Check project discord, with project owners, or through existing issues/PRs to avoid duplicate work. Please make sure to tag all of the above with relevant project identifiers or your contribution could potentially get lost. Example tags: backend, bindings, python-bindings, documentation, etc.

Citation

If you utilize this repository, models or data in a downstream project, please consider citing it with:

@misc{gpt4all,
  author = {Yuvanesh Anand and Zach Nussbaum and Brandon Duderstadt and Benjamin Schmidt and Andriy Mulyar},
  title = {GPT4All: Training an Assistant-style Chatbot with Large Scale Data Distillation from GPT-3.5-Turbo},
  year = {2023},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/nomic-ai/gpt4all}},
}