TST: add test for random distributions. Closes #1512. · numpy/numpy@898e6bd (original) (raw)

1

``

`-

from numpy.testing import TestCase, run_module_suite, assert_

`

``

1

`+

from numpy.testing import TestCase, run_module_suite, assert_

`

2

2

`from numpy import random

`

3

3

`import numpy as np

`

4

4

``

`@@ -67,6 +67,362 @@ def test_negative_binomial(self):

`

67

67

` """

`

68

68

`self.prng.negative_binomial(0.5, 0.5)

`

69

69

``

``

70

`+

class TestRandomDist(TestCase):

`

``

71

`+

""" Make sure the random distrobution return the correct value for a

`

``

72

`+

given seed

`

``

73

`+

"""

`

``

74

`+

def setUp(self):

`

``

75

`+

self.seed = 1234567890

`

``

76

+

``

77

`+

def test_rand(self):

`

``

78

`+

np.random.seed(self.seed)

`

``

79

`+

actual = np.random.rand(3, 2)

`

``

80

`+

desired = np.array([[ 0.61879477158567997, 0.59162362775974664],

`

``

81

`+

[ 0.88868358904449662, 0.89165480011560816],

`

``

82

`+

[ 0.4575674820298663 , 0.7781880808593471 ]])

`

``

83

`+

np.testing.assert_array_almost_equal(actual, desired, decimal=15)

`

``

84

+

``

85

`+

def test_randn(self):

`

``

86

`+

np.random.seed(self.seed)

`

``

87

`+

actual = np.random.randn(3, 2)

`

``

88

`+

desired = np.array([[ 1.34016345771863121, 1.73759122771936081],

`

``

89

`+

[ 1.498988344300628 , -0.2286433324536169 ],

`

``

90

`+

[ 2.031033998682787 , 2.17032494605655257]])

`

``

91

`+

np.testing.assert_array_almost_equal(actual, desired, decimal=15)

`

``

92

+

``

93

`+

def test_randint(self):

`

``

94

`+

np.random.seed(self.seed)

`

``

95

`+

actual = np.random.randint(-99, 99, size=(3,2))

`

``

96

`+

desired = np.array([[ 31, 3],

`

``

97

`+

[-52, 41],

`

``

98

`+

[-48, -66]])

`

``

99

`+

np.testing.assert_array_equal(actual, desired)

`

``

100

+

``

101

`+

def test_random_integers(self):

`

``

102

`+

np.random.seed(self.seed)

`

``

103

`+

actual = np.random.random_integers(-99, 99, size=(3,2))

`

``

104

`+

desired = np.array([[ 31, 3],

`

``

105

`+

[-52, 41],

`

``

106

`+

[-48, -66]])

`

``

107

`+

np.testing.assert_array_equal(actual, desired)

`

``

108

+

``

109

`+

def test_random_sample(self):

`

``

110

`+

np.random.seed(self.seed)

`

``

111

`+

actual = np.random.random_sample((3, 2))

`

``

112

`+

desired = np.array([[ 0.61879477158567997, 0.59162362775974664],

`

``

113

`+

[ 0.88868358904449662, 0.89165480011560816],

`

``

114

`+

[ 0.4575674820298663 , 0.7781880808593471 ]])

`

``

115

`+

np.testing.assert_array_almost_equal(actual, desired, decimal=15)

`

``

116

+

``

117

`+

def test_bytes(self):

`

``

118

`+

np.random.seed(self.seed)

`

``

119

`+

actual = np.random.bytes(10)

`

``

120

`+

desired = '\x82Ui\x9e\xff\x97+Wf\xa5'

`

``

121

`+

np.testing.assert_string_equal(actual, desired)

`

``

122

+

``

123

`+

def test_shuffle(self):

`

``

124

`+

np.random.seed(self.seed)

`

``

125

`+

alist = [1,2,3,4,5,6,7,8,9,0]

`

``

126

`+

np.random.shuffle(alist)

`

``

127

`+

actual = alist

`

``

128

`+

desired = [0, 1, 9, 6, 2, 4, 5, 8, 7, 3]

`

``

129

`+

np.testing.assert_array_equal(actual, desired)

`

``

130

+

``

131

`+

def test_beta(self):

`

``

132

`+

np.random.seed(self.seed)

`

``

133

`+

actual = np.random.beta(.1, .9, size=(3, 2))

`

``

134

`+

desired = np.array([[ 1.45341850513746058e-02, 5.31297615662868145e-04],

`

``

135

`+

[ 1.85366619058432324e-06, 4.19214516800110563e-03],

`

``

136

`+

[ 1.58405155108498093e-04, 1.26252891949397652e-04]])

`

``

137

`+

np.testing.assert_array_almost_equal(actual, desired, decimal=15)

`

``

138

+

``

139

`+

def test_binomial(self):

`

``

140

`+

np.random.seed(self.seed)

`

``

141

`+

actual = np.random.binomial(100.123, .456, size=(3, 2))

`

``

142

`+

desired = np.array([[37, 43],

`

``

143

`+

[42, 48],

`

``

144

`+

[46, 45]])

`

``

145

`+

np.testing.assert_array_equal(actual, desired)

`

``

146

+

``

147

`+

def test_chisquare(self):

`

``

148

`+

np.random.seed(self.seed)

`

``

149

`+

actual = np.random.chisquare(50, size=(3, 2))

`

``

150

`+

desired = np.array([[ 63.87858175501090585, 68.68407748911370447],

`

``

151

`+

[ 65.77116116901505904, 47.09686762438974483],

`

``

152

`+

[ 72.3828403199695174 , 74.18408615260374006]])

`

``

153

`+

np.testing.assert_array_almost_equal(actual, desired, decimal=15)

`

``

154

+

``

155

`+

def test_dirichlet(self):

`

``

156

`+

np.random.seed(self.seed)

`

``

157

`+

alpha = np.array([51.72840233779265162, 39.74494232180943953])

`

``

158

`+

actual = np.random.mtrand.dirichlet(alpha, size=(3, 2))

`

``

159

`+

desired = np.array([[[ 0.54539444573611562, 0.45460555426388438],

`

``

160

`+

[ 0.62345816822039413, 0.37654183177960598]],

`

``

161

`+

[[ 0.55206000085785778, 0.44793999914214233],

`

``

162

`+

[ 0.58964023305154301, 0.41035976694845688]],

`

``

163

`+

[[ 0.59266909280647828, 0.40733090719352177],

`

``

164

`+

[ 0.56974431743975207, 0.43025568256024799]]])

`

``

165

`+

np.testing.assert_array_almost_equal(actual, desired, decimal=15)

`

``

166

+

``

167

`+

def test_exponential(self):

`

``

168

`+

np.random.seed(self.seed)

`

``

169

`+

actual = np.random.exponential(1.1234, size=(3, 2))

`

``

170

`+

desired = np.array([[ 1.08342649775011624, 1.00607889924557314],

`

``

171

`+

[ 2.46628830085216721, 2.49668106809923884],

`

``

172

`+

[ 0.68717433461363442, 1.69175666993575979]])

`

``

173

`+

np.testing.assert_array_almost_equal(actual, desired, decimal=15)

`

``

174

+

``

175

`+

def test_f(self):

`

``

176

`+

np.random.seed(self.seed)

`

``

177

`+

actual = np.random.f(12, 77, size=(3, 2))

`

``

178

`+

desired = np.array([[ 1.21975394418575878, 1.75135759791559775],

`

``

179

`+

[ 1.44803115017146489, 1.22108959480396262],

`

``

180

`+

[ 1.02176975757740629, 1.34431827623300415]])

`

``

181

`+

np.testing.assert_array_almost_equal(actual, desired, decimal=15)

`

``

182

+

``

183

`+

def test_gamma(self):

`

``

184

`+

np.random.seed(self.seed)

`

``

185

`+

actual = np.random.gamma(5, 3, size=(3, 2))

`

``

186

`+

desired = np.array([[ 24.60509188649287182, 28.54993563207210627],

`

``

187

`+

[ 26.13476110204064184, 12.56988482927716078],

`

``

188

`+

[ 31.71863275789960568, 33.30143302795922011]])

`

``

189

`+

np.testing.assert_array_almost_equal(actual, desired, decimal=15)

`

``

190

+

``

191

`+

def test_geometric(self):

`

``

192

`+

np.random.seed(self.seed)

`

``

193

`+

actual = np.random.geometric(.123456789, size=(3, 2))

`

``

194

`+

desired = np.array([[ 8, 7],

`

``

195

`+

[17, 17],

`

``

196

`+

[ 5, 12]])

`

``

197

`+

np.testing.assert_array_equal(actual, desired)

`

``

198

+

``

199

`+

def test_gumbel(self):

`

``

200

`+

np.random.seed(self.seed)

`

``

201

`+

actual = np.random.gumbel(loc = .123456789, scale = 2.0, size = (3, 2))

`

``

202

`+

desired = np.array([[ 0.19591898743416816, 0.34405539668096674],

`

``

203

`+

[-1.4492522252274278 , -1.47374816298446865],

`

``

204

`+

[ 1.10651090478803416, -0.69535848626236174]])

`

``

205

`+

np.testing.assert_array_almost_equal(actual, desired, decimal=15)

`

``

206

+

``

207

`+

def test_hypergeometric(self):

`

``

208

`+

np.random.seed(self.seed)

`

``

209

`+

actual = np.random.hypergeometric(10.1, 5.5, 14, size=(3, 2))

`

``

210

`+

desired = np.array([[10, 10],

`

``

211

`+

[10, 10],

`

``

212

`+

[ 9, 9]])

`

``

213

`+

np.testing.assert_array_equal(actual, desired)

`

``

214

+

``

215

`+

def test_laplace(self):

`

``

216

`+

np.random.seed(self.seed)

`

``

217

`+

actual = np.random.laplace(loc=.123456789, scale=2.0, size=(3, 2))

`

``

218

`+

desired = np.array([[ 0.66599721112760157, 0.52829452552221945],

`

``

219

`+

[ 3.12791959514407125, 3.18202813572992005],

`

``

220

`+

[-0.05391065675859356, 1.74901336242837324]])

`

``

221

`+

np.testing.assert_array_almost_equal(actual, desired, decimal=15)

`

``

222

+

``

223

`+

def test_logistic(self):

`

``

224

`+

np.random.seed(self.seed)

`

``

225

`+

actual = np.random.logistic(loc=.123456789, scale=2.0, size=(3, 2))

`

``

226

`+

desired = np.array([[ 1.09232835305011444, 0.8648196662399954 ],

`

``

227

`+

[ 4.27818590694950185, 4.33897006346929714],

`

``

228

`+

[-0.21682183359214885, 2.63373365386060332]])

`

``

229

`+

np.testing.assert_array_almost_equal(actual, desired, decimal=15)

`

``

230

+

``

231

`+

def test_lognormal(self):

`

``

232

`+

np.random.seed(self.seed)

`

``

233

`+

actual = np.random.lognormal(mean=.123456789, sigma=2.0, size=(3, 2))

`

``

234

`+

desired = np.array([[ 16.50698631688883822, 36.54846706092654784],

`

``

235

`+

[ 22.67886599981281748, 0.71617561058995771],

`

``

236

`+

[ 65.72798501792723869, 86.84341601437161273]])

`

``

237

`+

np.testing.assert_array_almost_equal(actual, desired, decimal=15)

`

``

238

+

``

239

`+

def test_logseries(self):

`

``

240

`+

np.random.seed(self.seed)

`

``

241

`+

actual = np.random.logseries(p=.923456789, size=(3, 2))

`

``

242

`+

desired = np.array([[ 2, 2],

`

``

243

`+

[ 6, 17],

`

``

244

`+

[ 3, 6]])

`

``

245

`+

np.testing.assert_array_equal(actual, desired)

`

``

246

+

``

247

`+

def test_multinomial(self):

`

``

248

`+

np.random.seed(self.seed)

`

``

249

`+

actual = np.random.multinomial(20, [1/6.]*6, size=(3, 2))

`

``

250

`+

desired = np.array([[[4, 3, 5, 4, 2, 2],

`

``

251

`+

[5, 2, 8, 2, 2, 1]],

`

``

252

`+

[[3, 4, 3, 6, 0, 4],

`

``

253

`+

[2, 1, 4, 3, 6, 4]],

`

``

254

`+

[[4, 4, 2, 5, 2, 3],

`

``

255

`+

[4, 3, 4, 2, 3, 4]]])

`

``

256

`+

np.testing.assert_array_equal(actual, desired)

`

``

257

+

``

258

`+

def test_multivariate_normal(self):

`

``

259

`+

np.random.seed(self.seed)

`

``

260

`+

mean= (.123456789, 10)

`

``

261

`+

cov = [[1,0],[1,0]]

`

``

262

`+

size = (3, 2)

`

``

263

`+

actual = np.random.multivariate_normal(mean, cov, size)

`

``

264

`+

desired = np.array([[[ -1.47027513018564449, 10. ],

`

``

265

`+

[ -1.65915081534845532, 10. ]],

`

``

266

`+

[[ -2.29186329304599745, 10. ],

`

``

267

`+

[ -1.77505606019580053, 10. ]],

`

``

268

`+

[[ -0.54970369430044119, 10. ],

`

``

269

`+

[ 0.29768848031692957, 10. ]]])

`

``

270

`+

np.testing.assert_array_almost_equal(actual, desired, decimal=15)

`

``

271

+

``

272

`+

def test_negative_binomial(self):

`

``

273

`+

np.random.seed(self.seed)

`

``

274

`+

actual = np.random.negative_binomial(n = 100, p = .12345, size = (3, 2))

`

``

275

`+

desired = np.array([[848, 841],

`

``

276

`+

[892, 611],

`

``

277

`+

[779, 647]])

`

``

278

`+

np.testing.assert_array_equal(actual, desired)

`

``

279

+

``

280

`+

def test_noncentral_chisquare(self):

`

``

281

`+

np.random.seed(self.seed)

`

``

282

`+

actual = np.random.noncentral_chisquare(df = 5, nonc = 5, size = (3, 2))

`

``

283

`+

desired = np.array([[ 23.91905354498517511, 13.35324692733826346],

`

``

284

`+

[ 31.22452661329736401, 16.60047399466177254],

`

``

285

`+

[ 5.03461598262724586, 17.94973089023519464]])

`

``

286

`+

np.testing.assert_array_almost_equal(actual, desired, decimal=15)

`

``

287

+

``

288

`+

def test_noncentral_f(self):

`

``

289

`+

np.random.seed(self.seed)

`

``

290

`+

actual = np.random.noncentral_f(dfnum = 5, dfden = 2, nonc = 1,

`

``

291

`+

size = (3, 2))

`

``

292

`+

desired = np.array([[ 1.40598099674926669, 0.34207973179285761],

`

``

293

`+

[ 3.57715069265772545, 7.92632662577829805],

`

``

294

`+

[ 0.43741599463544162, 1.1774208752428319 ]])

`

``

295

`+

np.testing.assert_array_almost_equal(actual, desired, decimal=15)

`

``

296

+

``

297

`+

def test_normal(self):

`

``

298

`+

np.random.seed(self.seed)

`

``

299

`+

actual = np.random.normal(loc = .123456789, scale = 2.0, size = (3, 2))

`

``

300

`+

desired = np.array([[ 2.80378370443726244, 3.59863924443872163],

`

``

301

`+

[ 3.121433477601256 , -0.33382987590723379],

`

``

302

`+

[ 4.18552478636557357, 4.46410668111310471]])

`

``

303

`+

np.testing.assert_array_almost_equal(actual, desired, decimal=15)

`

``

304

+

``

305

`+

def test_pareto(self):

`

``

306

`+

np.random.seed(self.seed)

`

``

307

`+

actual = np.random.pareto(a =.123456789, size = (3, 2))

`

``

308

`+

desired = np.array([[ 2.46852460439034849e+03, 1.41286880810518346e+03],

`

``

309

`+

[ 5.28287797029485181e+07, 6.57720981047328785e+07],

`

``

310

`+

[ 1.40840323350391515e+02, 1.98390255135251704e+05]])

`

``

311

`+

np.testing.assert_array_almost_equal(actual, desired, decimal=15)

`

``

312

+

``

313

`+

def test_poisson(self):

`

``

314

`+

np.random.seed(self.seed)

`

``

315

`+

actual = np.random.poisson(lam = .123456789, size=(3, 2))

`

``

316

`+

desired = np.array([[0, 0],

`

``

317

`+

[1, 0],

`

``

318

`+

[0, 0]])

`

``

319

`+

np.testing.assert_array_equal(actual, desired)

`

``

320

+

``

321

`+

def test_power(self):

`

``

322

`+

np.random.seed(self.seed)

`

``

323

`+

actual = np.random.power(a =.123456789, size = (3, 2))

`

``

324

`+

desired = np.array([[ 0.02048932883240791, 0.01424192241128213],

`

``

325

`+

[ 0.38446073748535298, 0.39499689943484395],

`

``

326

`+

[ 0.00177699707563439, 0.13115505880863756]])

`

``

327

`+

np.testing.assert_array_almost_equal(actual, desired, decimal=15)

`

``

328

+

``

329

`+

def test_rayleigh(self):

`

``

330

`+

np.random.seed(self.seed)

`

``

331

`+

actual = np.random.rayleigh(scale = 10, size = (3, 2))

`

``

332

`+

desired = np.array([[ 13.8882496494248393 , 13.383318339044731 ],

`

``

333

`+

[ 20.95413364294492098, 21.08285015800712614],

`

``

334

`+

[ 11.06066537006854311, 17.35468505778271009]])

`

``

335

`+

np.testing.assert_array_almost_equal(actual, desired, decimal=15)

`

``

336

+

``

337

`+

def test_standard_cauchy(self):

`

``

338

`+

np.random.seed(self.seed)

`

``

339

`+

actual = np.random.standard_cauchy(size = (3, 2))

`

``

340

`+

desired = np.array([[ 0.77127660196445336, -6.55601161955910605],

`

``

341

`+

[ 0.93582023391158309, -2.07479293013759447],

`

``

342

`+

[-4.74601644297011926, 0.18338989290760804]])

`

``

343

`+

np.testing.assert_array_almost_equal(actual, desired, decimal=15)

`

``

344

+

``

345

`+

def test_standard_exponential(self):

`

``

346

`+

np.random.seed(self.seed)

`

``

347

`+

actual = np.random.standard_exponential(size = (3, 2))

`

``

348

`+

desired = np.array([[ 0.96441739162374596, 0.89556604882105506],

`

``

349

`+

[ 2.1953785836319808 , 2.22243285392490542],

`

``

350

`+

[ 0.6116915921431676 , 1.50592546727413201]])

`

``

351

`+

np.testing.assert_array_almost_equal(actual, desired, decimal=15)

`

``

352

+

``

353

`+

def test_standard_gamma(self):

`

``

354

`+

np.random.seed(self.seed)

`

``

355

`+

actual = np.random.standard_gamma(shape = 3, size = (3, 2))

`

``

356

`+

desired = np.array([[ 5.50841531318455058, 6.62953470301903103],

`

``

357

`+

[ 5.93988484943779227, 2.31044849402133989],

`

``

358

`+

[ 7.54838614231317084, 8.012756093271868 ]])

`

``

359

`+

np.testing.assert_array_almost_equal(actual, desired, decimal=15)

`

``

360

+

``

361

`+

def test_standard_normal(self):

`

``

362

`+

np.random.seed(self.seed)

`

``

363

`+

actual = np.random.standard_normal(size = (3, 2))

`

``

364

`+

desired = np.array([[ 1.34016345771863121, 1.73759122771936081],

`

``

365

`+

[ 1.498988344300628 , -0.2286433324536169 ],

`

``

366

`+

[ 2.031033998682787 , 2.17032494605655257]])

`

``

367

`+

np.testing.assert_array_almost_equal(actual, desired, decimal=15)

`

``

368

+

``

369

`+

def test_standard_t(self):

`

``

370

`+

np.random.seed(self.seed)

`

``

371

`+

actual = np.random.standard_t(df = 10, size = (3, 2))

`

``

372

`+

desired = np.array([[ 0.97140611862659965, -0.08830486548450577],

`

``

373

`+

[ 1.36311143689505321, -0.55317463909867071],

`

``

374

`+

[-0.18473749069684214, 0.61181537341755321]])

`

``

375

`+

np.testing.assert_array_almost_equal(actual, desired, decimal=15)

`

``

376

+

``

377

`+

def test_triangular(self):

`

``

378

`+

np.random.seed(self.seed)

`

``

379

`+

actual = np.random.triangular(left = 5.12, mode = 10.23, right = 20.34,

`

``

380

`+

size = (3, 2))

`

``

381

`+

desired = np.array([[ 12.68117178949215784, 12.4129206149193152 ],

`

``

382

`+

[ 16.20131377335158263, 16.25692138747600524],

`

``

383

`+

[ 11.20400690911820263, 14.4978144835829923 ]])

`

``

384

`+

np.testing.assert_array_almost_equal(actual, desired, decimal=15)

`

``

385

+

``

386

`+

def test_uniform(self):

`

``

387

`+

np.random.seed(self.seed)

`

``

388

`+

actual = np.random.uniform(low = 1.23, high=10.54, size = (3, 2))

`

``

389

`+

desired = np.array([[ 6.99097932346268003, 6.73801597444323974],

`

``

390

`+

[ 9.50364421400426274, 9.53130618907631089],

`

``

391

`+

[ 5.48995325769805476, 8.47493103280052118]])

`

``

392

`+

np.testing.assert_array_almost_equal(actual, desired, decimal=15)

`

``

393

+

``

394

+

``

395

`+

def test_vonmises(self):

`

``

396

`+

np.random.seed(self.seed)

`

``

397

`+

actual = np.random.vonmises(mu = 1.23, kappa = 1.54, size = (3, 2))

`

``

398

`+

desired = np.array([[ 2.28567572673902042, 2.89163838442285037],

`

``

399

`+

[ 0.38198375564286025, 2.57638023113890746],

`

``

400

`+

[ 1.19153771588353052, 1.83509849681825354]])

`

``

401

`+

np.testing.assert_array_almost_equal(actual, desired, decimal=15)

`

``

402

+

``

403

`+

def test_wald(self):

`

``

404

`+

np.random.seed(self.seed)

`

``

405

`+

actual = np.random.wald(mean = 1.23, scale = 1.54, size = (3, 2))

`

``

406

`+

desired = np.array([[ 3.82935265715889983, 5.13125249184285526],

`

``

407

`+

[ 0.35045403618358717, 1.50832396872003538],

`

``

408

`+

[ 0.24124319895843183, 0.22031101461955038]])

`

``

409

`+

np.testing.assert_array_almost_equal(actual, desired, decimal=15)

`

``

410

+

``

411

`+

def test_weibull(self):

`

``

412

`+

np.random.seed(self.seed)

`

``

413

`+

actual = np.random.weibull(a = 1.23, size = (3, 2))

`

``

414

`+

desired = np.array([[ 0.97097342648766727, 0.91422896443565516],

`

``

415

`+

[ 1.89517770034962929, 1.91414357960479564],

`

``

416

`+

[ 0.67057783752390987, 1.39494046635066793]])

`

``

417

`+

np.testing.assert_array_almost_equal(actual, desired, decimal=15)

`

``

418

+

``

419

`+

def test_zipf(self):

`

``

420

`+

np.random.seed(self.seed)

`

``

421

`+

actual = np.random.zipf(a = 1.23, size = (3, 2))

`

``

422

`+

desired = np.array([[66, 29],

`

``

423

`+

[ 1, 1],

`

``

424

`+

[ 3, 13]])

`

``

425

`+

np.testing.assert_array_equal(actual, desired)

`

70

426

``

71

427

`if name == "main":

`

72

428

`run_module_suite()

`