TST: add test for random distributions. Closes #1512. · numpy/numpy@898e6bd (original) (raw)
1
``
`-
from numpy.testing import TestCase, run_module_suite, assert_
`
``
1
`+
from numpy.testing import TestCase, run_module_suite, assert_
`
2
2
`from numpy import random
`
3
3
`import numpy as np
`
4
4
``
`@@ -67,6 +67,362 @@ def test_negative_binomial(self):
`
67
67
` """
`
68
68
`self.prng.negative_binomial(0.5, 0.5)
`
69
69
``
``
70
`+
class TestRandomDist(TestCase):
`
``
71
`+
""" Make sure the random distrobution return the correct value for a
`
``
72
`+
given seed
`
``
73
`+
"""
`
``
74
`+
def setUp(self):
`
``
75
`+
self.seed = 1234567890
`
``
76
+
``
77
`+
def test_rand(self):
`
``
78
`+
np.random.seed(self.seed)
`
``
79
`+
actual = np.random.rand(3, 2)
`
``
80
`+
desired = np.array([[ 0.61879477158567997, 0.59162362775974664],
`
``
81
`+
[ 0.88868358904449662, 0.89165480011560816],
`
``
82
`+
[ 0.4575674820298663 , 0.7781880808593471 ]])
`
``
83
`+
np.testing.assert_array_almost_equal(actual, desired, decimal=15)
`
``
84
+
``
85
`+
def test_randn(self):
`
``
86
`+
np.random.seed(self.seed)
`
``
87
`+
actual = np.random.randn(3, 2)
`
``
88
`+
desired = np.array([[ 1.34016345771863121, 1.73759122771936081],
`
``
89
`+
[ 1.498988344300628 , -0.2286433324536169 ],
`
``
90
`+
[ 2.031033998682787 , 2.17032494605655257]])
`
``
91
`+
np.testing.assert_array_almost_equal(actual, desired, decimal=15)
`
``
92
+
``
93
`+
def test_randint(self):
`
``
94
`+
np.random.seed(self.seed)
`
``
95
`+
actual = np.random.randint(-99, 99, size=(3,2))
`
``
96
`+
desired = np.array([[ 31, 3],
`
``
97
`+
[-52, 41],
`
``
98
`+
[-48, -66]])
`
``
99
`+
np.testing.assert_array_equal(actual, desired)
`
``
100
+
``
101
`+
def test_random_integers(self):
`
``
102
`+
np.random.seed(self.seed)
`
``
103
`+
actual = np.random.random_integers(-99, 99, size=(3,2))
`
``
104
`+
desired = np.array([[ 31, 3],
`
``
105
`+
[-52, 41],
`
``
106
`+
[-48, -66]])
`
``
107
`+
np.testing.assert_array_equal(actual, desired)
`
``
108
+
``
109
`+
def test_random_sample(self):
`
``
110
`+
np.random.seed(self.seed)
`
``
111
`+
actual = np.random.random_sample((3, 2))
`
``
112
`+
desired = np.array([[ 0.61879477158567997, 0.59162362775974664],
`
``
113
`+
[ 0.88868358904449662, 0.89165480011560816],
`
``
114
`+
[ 0.4575674820298663 , 0.7781880808593471 ]])
`
``
115
`+
np.testing.assert_array_almost_equal(actual, desired, decimal=15)
`
``
116
+
``
117
`+
def test_bytes(self):
`
``
118
`+
np.random.seed(self.seed)
`
``
119
`+
actual = np.random.bytes(10)
`
``
120
`+
desired = '\x82Ui\x9e\xff\x97+Wf\xa5'
`
``
121
`+
np.testing.assert_string_equal(actual, desired)
`
``
122
+
``
123
`+
def test_shuffle(self):
`
``
124
`+
np.random.seed(self.seed)
`
``
125
`+
alist = [1,2,3,4,5,6,7,8,9,0]
`
``
126
`+
np.random.shuffle(alist)
`
``
127
`+
actual = alist
`
``
128
`+
desired = [0, 1, 9, 6, 2, 4, 5, 8, 7, 3]
`
``
129
`+
np.testing.assert_array_equal(actual, desired)
`
``
130
+
``
131
`+
def test_beta(self):
`
``
132
`+
np.random.seed(self.seed)
`
``
133
`+
actual = np.random.beta(.1, .9, size=(3, 2))
`
``
134
`+
desired = np.array([[ 1.45341850513746058e-02, 5.31297615662868145e-04],
`
``
135
`+
[ 1.85366619058432324e-06, 4.19214516800110563e-03],
`
``
136
`+
[ 1.58405155108498093e-04, 1.26252891949397652e-04]])
`
``
137
`+
np.testing.assert_array_almost_equal(actual, desired, decimal=15)
`
``
138
+
``
139
`+
def test_binomial(self):
`
``
140
`+
np.random.seed(self.seed)
`
``
141
`+
actual = np.random.binomial(100.123, .456, size=(3, 2))
`
``
142
`+
desired = np.array([[37, 43],
`
``
143
`+
[42, 48],
`
``
144
`+
[46, 45]])
`
``
145
`+
np.testing.assert_array_equal(actual, desired)
`
``
146
+
``
147
`+
def test_chisquare(self):
`
``
148
`+
np.random.seed(self.seed)
`
``
149
`+
actual = np.random.chisquare(50, size=(3, 2))
`
``
150
`+
desired = np.array([[ 63.87858175501090585, 68.68407748911370447],
`
``
151
`+
[ 65.77116116901505904, 47.09686762438974483],
`
``
152
`+
[ 72.3828403199695174 , 74.18408615260374006]])
`
``
153
`+
np.testing.assert_array_almost_equal(actual, desired, decimal=15)
`
``
154
+
``
155
`+
def test_dirichlet(self):
`
``
156
`+
np.random.seed(self.seed)
`
``
157
`+
alpha = np.array([51.72840233779265162, 39.74494232180943953])
`
``
158
`+
actual = np.random.mtrand.dirichlet(alpha, size=(3, 2))
`
``
159
`+
desired = np.array([[[ 0.54539444573611562, 0.45460555426388438],
`
``
160
`+
[ 0.62345816822039413, 0.37654183177960598]],
`
``
161
`+
[[ 0.55206000085785778, 0.44793999914214233],
`
``
162
`+
[ 0.58964023305154301, 0.41035976694845688]],
`
``
163
`+
[[ 0.59266909280647828, 0.40733090719352177],
`
``
164
`+
[ 0.56974431743975207, 0.43025568256024799]]])
`
``
165
`+
np.testing.assert_array_almost_equal(actual, desired, decimal=15)
`
``
166
+
``
167
`+
def test_exponential(self):
`
``
168
`+
np.random.seed(self.seed)
`
``
169
`+
actual = np.random.exponential(1.1234, size=(3, 2))
`
``
170
`+
desired = np.array([[ 1.08342649775011624, 1.00607889924557314],
`
``
171
`+
[ 2.46628830085216721, 2.49668106809923884],
`
``
172
`+
[ 0.68717433461363442, 1.69175666993575979]])
`
``
173
`+
np.testing.assert_array_almost_equal(actual, desired, decimal=15)
`
``
174
+
``
175
`+
def test_f(self):
`
``
176
`+
np.random.seed(self.seed)
`
``
177
`+
actual = np.random.f(12, 77, size=(3, 2))
`
``
178
`+
desired = np.array([[ 1.21975394418575878, 1.75135759791559775],
`
``
179
`+
[ 1.44803115017146489, 1.22108959480396262],
`
``
180
`+
[ 1.02176975757740629, 1.34431827623300415]])
`
``
181
`+
np.testing.assert_array_almost_equal(actual, desired, decimal=15)
`
``
182
+
``
183
`+
def test_gamma(self):
`
``
184
`+
np.random.seed(self.seed)
`
``
185
`+
actual = np.random.gamma(5, 3, size=(3, 2))
`
``
186
`+
desired = np.array([[ 24.60509188649287182, 28.54993563207210627],
`
``
187
`+
[ 26.13476110204064184, 12.56988482927716078],
`
``
188
`+
[ 31.71863275789960568, 33.30143302795922011]])
`
``
189
`+
np.testing.assert_array_almost_equal(actual, desired, decimal=15)
`
``
190
+
``
191
`+
def test_geometric(self):
`
``
192
`+
np.random.seed(self.seed)
`
``
193
`+
actual = np.random.geometric(.123456789, size=(3, 2))
`
``
194
`+
desired = np.array([[ 8, 7],
`
``
195
`+
[17, 17],
`
``
196
`+
[ 5, 12]])
`
``
197
`+
np.testing.assert_array_equal(actual, desired)
`
``
198
+
``
199
`+
def test_gumbel(self):
`
``
200
`+
np.random.seed(self.seed)
`
``
201
`+
actual = np.random.gumbel(loc = .123456789, scale = 2.0, size = (3, 2))
`
``
202
`+
desired = np.array([[ 0.19591898743416816, 0.34405539668096674],
`
``
203
`+
[-1.4492522252274278 , -1.47374816298446865],
`
``
204
`+
[ 1.10651090478803416, -0.69535848626236174]])
`
``
205
`+
np.testing.assert_array_almost_equal(actual, desired, decimal=15)
`
``
206
+
``
207
`+
def test_hypergeometric(self):
`
``
208
`+
np.random.seed(self.seed)
`
``
209
`+
actual = np.random.hypergeometric(10.1, 5.5, 14, size=(3, 2))
`
``
210
`+
desired = np.array([[10, 10],
`
``
211
`+
[10, 10],
`
``
212
`+
[ 9, 9]])
`
``
213
`+
np.testing.assert_array_equal(actual, desired)
`
``
214
+
``
215
`+
def test_laplace(self):
`
``
216
`+
np.random.seed(self.seed)
`
``
217
`+
actual = np.random.laplace(loc=.123456789, scale=2.0, size=(3, 2))
`
``
218
`+
desired = np.array([[ 0.66599721112760157, 0.52829452552221945],
`
``
219
`+
[ 3.12791959514407125, 3.18202813572992005],
`
``
220
`+
[-0.05391065675859356, 1.74901336242837324]])
`
``
221
`+
np.testing.assert_array_almost_equal(actual, desired, decimal=15)
`
``
222
+
``
223
`+
def test_logistic(self):
`
``
224
`+
np.random.seed(self.seed)
`
``
225
`+
actual = np.random.logistic(loc=.123456789, scale=2.0, size=(3, 2))
`
``
226
`+
desired = np.array([[ 1.09232835305011444, 0.8648196662399954 ],
`
``
227
`+
[ 4.27818590694950185, 4.33897006346929714],
`
``
228
`+
[-0.21682183359214885, 2.63373365386060332]])
`
``
229
`+
np.testing.assert_array_almost_equal(actual, desired, decimal=15)
`
``
230
+
``
231
`+
def test_lognormal(self):
`
``
232
`+
np.random.seed(self.seed)
`
``
233
`+
actual = np.random.lognormal(mean=.123456789, sigma=2.0, size=(3, 2))
`
``
234
`+
desired = np.array([[ 16.50698631688883822, 36.54846706092654784],
`
``
235
`+
[ 22.67886599981281748, 0.71617561058995771],
`
``
236
`+
[ 65.72798501792723869, 86.84341601437161273]])
`
``
237
`+
np.testing.assert_array_almost_equal(actual, desired, decimal=15)
`
``
238
+
``
239
`+
def test_logseries(self):
`
``
240
`+
np.random.seed(self.seed)
`
``
241
`+
actual = np.random.logseries(p=.923456789, size=(3, 2))
`
``
242
`+
desired = np.array([[ 2, 2],
`
``
243
`+
[ 6, 17],
`
``
244
`+
[ 3, 6]])
`
``
245
`+
np.testing.assert_array_equal(actual, desired)
`
``
246
+
``
247
`+
def test_multinomial(self):
`
``
248
`+
np.random.seed(self.seed)
`
``
249
`+
actual = np.random.multinomial(20, [1/6.]*6, size=(3, 2))
`
``
250
`+
desired = np.array([[[4, 3, 5, 4, 2, 2],
`
``
251
`+
[5, 2, 8, 2, 2, 1]],
`
``
252
`+
[[3, 4, 3, 6, 0, 4],
`
``
253
`+
[2, 1, 4, 3, 6, 4]],
`
``
254
`+
[[4, 4, 2, 5, 2, 3],
`
``
255
`+
[4, 3, 4, 2, 3, 4]]])
`
``
256
`+
np.testing.assert_array_equal(actual, desired)
`
``
257
+
``
258
`+
def test_multivariate_normal(self):
`
``
259
`+
np.random.seed(self.seed)
`
``
260
`+
mean= (.123456789, 10)
`
``
261
`+
cov = [[1,0],[1,0]]
`
``
262
`+
size = (3, 2)
`
``
263
`+
actual = np.random.multivariate_normal(mean, cov, size)
`
``
264
`+
desired = np.array([[[ -1.47027513018564449, 10. ],
`
``
265
`+
[ -1.65915081534845532, 10. ]],
`
``
266
`+
[[ -2.29186329304599745, 10. ],
`
``
267
`+
[ -1.77505606019580053, 10. ]],
`
``
268
`+
[[ -0.54970369430044119, 10. ],
`
``
269
`+
[ 0.29768848031692957, 10. ]]])
`
``
270
`+
np.testing.assert_array_almost_equal(actual, desired, decimal=15)
`
``
271
+
``
272
`+
def test_negative_binomial(self):
`
``
273
`+
np.random.seed(self.seed)
`
``
274
`+
actual = np.random.negative_binomial(n = 100, p = .12345, size = (3, 2))
`
``
275
`+
desired = np.array([[848, 841],
`
``
276
`+
[892, 611],
`
``
277
`+
[779, 647]])
`
``
278
`+
np.testing.assert_array_equal(actual, desired)
`
``
279
+
``
280
`+
def test_noncentral_chisquare(self):
`
``
281
`+
np.random.seed(self.seed)
`
``
282
`+
actual = np.random.noncentral_chisquare(df = 5, nonc = 5, size = (3, 2))
`
``
283
`+
desired = np.array([[ 23.91905354498517511, 13.35324692733826346],
`
``
284
`+
[ 31.22452661329736401, 16.60047399466177254],
`
``
285
`+
[ 5.03461598262724586, 17.94973089023519464]])
`
``
286
`+
np.testing.assert_array_almost_equal(actual, desired, decimal=15)
`
``
287
+
``
288
`+
def test_noncentral_f(self):
`
``
289
`+
np.random.seed(self.seed)
`
``
290
`+
actual = np.random.noncentral_f(dfnum = 5, dfden = 2, nonc = 1,
`
``
291
`+
size = (3, 2))
`
``
292
`+
desired = np.array([[ 1.40598099674926669, 0.34207973179285761],
`
``
293
`+
[ 3.57715069265772545, 7.92632662577829805],
`
``
294
`+
[ 0.43741599463544162, 1.1774208752428319 ]])
`
``
295
`+
np.testing.assert_array_almost_equal(actual, desired, decimal=15)
`
``
296
+
``
297
`+
def test_normal(self):
`
``
298
`+
np.random.seed(self.seed)
`
``
299
`+
actual = np.random.normal(loc = .123456789, scale = 2.0, size = (3, 2))
`
``
300
`+
desired = np.array([[ 2.80378370443726244, 3.59863924443872163],
`
``
301
`+
[ 3.121433477601256 , -0.33382987590723379],
`
``
302
`+
[ 4.18552478636557357, 4.46410668111310471]])
`
``
303
`+
np.testing.assert_array_almost_equal(actual, desired, decimal=15)
`
``
304
+
``
305
`+
def test_pareto(self):
`
``
306
`+
np.random.seed(self.seed)
`
``
307
`+
actual = np.random.pareto(a =.123456789, size = (3, 2))
`
``
308
`+
desired = np.array([[ 2.46852460439034849e+03, 1.41286880810518346e+03],
`
``
309
`+
[ 5.28287797029485181e+07, 6.57720981047328785e+07],
`
``
310
`+
[ 1.40840323350391515e+02, 1.98390255135251704e+05]])
`
``
311
`+
np.testing.assert_array_almost_equal(actual, desired, decimal=15)
`
``
312
+
``
313
`+
def test_poisson(self):
`
``
314
`+
np.random.seed(self.seed)
`
``
315
`+
actual = np.random.poisson(lam = .123456789, size=(3, 2))
`
``
316
`+
desired = np.array([[0, 0],
`
``
317
`+
[1, 0],
`
``
318
`+
[0, 0]])
`
``
319
`+
np.testing.assert_array_equal(actual, desired)
`
``
320
+
``
321
`+
def test_power(self):
`
``
322
`+
np.random.seed(self.seed)
`
``
323
`+
actual = np.random.power(a =.123456789, size = (3, 2))
`
``
324
`+
desired = np.array([[ 0.02048932883240791, 0.01424192241128213],
`
``
325
`+
[ 0.38446073748535298, 0.39499689943484395],
`
``
326
`+
[ 0.00177699707563439, 0.13115505880863756]])
`
``
327
`+
np.testing.assert_array_almost_equal(actual, desired, decimal=15)
`
``
328
+
``
329
`+
def test_rayleigh(self):
`
``
330
`+
np.random.seed(self.seed)
`
``
331
`+
actual = np.random.rayleigh(scale = 10, size = (3, 2))
`
``
332
`+
desired = np.array([[ 13.8882496494248393 , 13.383318339044731 ],
`
``
333
`+
[ 20.95413364294492098, 21.08285015800712614],
`
``
334
`+
[ 11.06066537006854311, 17.35468505778271009]])
`
``
335
`+
np.testing.assert_array_almost_equal(actual, desired, decimal=15)
`
``
336
+
``
337
`+
def test_standard_cauchy(self):
`
``
338
`+
np.random.seed(self.seed)
`
``
339
`+
actual = np.random.standard_cauchy(size = (3, 2))
`
``
340
`+
desired = np.array([[ 0.77127660196445336, -6.55601161955910605],
`
``
341
`+
[ 0.93582023391158309, -2.07479293013759447],
`
``
342
`+
[-4.74601644297011926, 0.18338989290760804]])
`
``
343
`+
np.testing.assert_array_almost_equal(actual, desired, decimal=15)
`
``
344
+
``
345
`+
def test_standard_exponential(self):
`
``
346
`+
np.random.seed(self.seed)
`
``
347
`+
actual = np.random.standard_exponential(size = (3, 2))
`
``
348
`+
desired = np.array([[ 0.96441739162374596, 0.89556604882105506],
`
``
349
`+
[ 2.1953785836319808 , 2.22243285392490542],
`
``
350
`+
[ 0.6116915921431676 , 1.50592546727413201]])
`
``
351
`+
np.testing.assert_array_almost_equal(actual, desired, decimal=15)
`
``
352
+
``
353
`+
def test_standard_gamma(self):
`
``
354
`+
np.random.seed(self.seed)
`
``
355
`+
actual = np.random.standard_gamma(shape = 3, size = (3, 2))
`
``
356
`+
desired = np.array([[ 5.50841531318455058, 6.62953470301903103],
`
``
357
`+
[ 5.93988484943779227, 2.31044849402133989],
`
``
358
`+
[ 7.54838614231317084, 8.012756093271868 ]])
`
``
359
`+
np.testing.assert_array_almost_equal(actual, desired, decimal=15)
`
``
360
+
``
361
`+
def test_standard_normal(self):
`
``
362
`+
np.random.seed(self.seed)
`
``
363
`+
actual = np.random.standard_normal(size = (3, 2))
`
``
364
`+
desired = np.array([[ 1.34016345771863121, 1.73759122771936081],
`
``
365
`+
[ 1.498988344300628 , -0.2286433324536169 ],
`
``
366
`+
[ 2.031033998682787 , 2.17032494605655257]])
`
``
367
`+
np.testing.assert_array_almost_equal(actual, desired, decimal=15)
`
``
368
+
``
369
`+
def test_standard_t(self):
`
``
370
`+
np.random.seed(self.seed)
`
``
371
`+
actual = np.random.standard_t(df = 10, size = (3, 2))
`
``
372
`+
desired = np.array([[ 0.97140611862659965, -0.08830486548450577],
`
``
373
`+
[ 1.36311143689505321, -0.55317463909867071],
`
``
374
`+
[-0.18473749069684214, 0.61181537341755321]])
`
``
375
`+
np.testing.assert_array_almost_equal(actual, desired, decimal=15)
`
``
376
+
``
377
`+
def test_triangular(self):
`
``
378
`+
np.random.seed(self.seed)
`
``
379
`+
actual = np.random.triangular(left = 5.12, mode = 10.23, right = 20.34,
`
``
380
`+
size = (3, 2))
`
``
381
`+
desired = np.array([[ 12.68117178949215784, 12.4129206149193152 ],
`
``
382
`+
[ 16.20131377335158263, 16.25692138747600524],
`
``
383
`+
[ 11.20400690911820263, 14.4978144835829923 ]])
`
``
384
`+
np.testing.assert_array_almost_equal(actual, desired, decimal=15)
`
``
385
+
``
386
`+
def test_uniform(self):
`
``
387
`+
np.random.seed(self.seed)
`
``
388
`+
actual = np.random.uniform(low = 1.23, high=10.54, size = (3, 2))
`
``
389
`+
desired = np.array([[ 6.99097932346268003, 6.73801597444323974],
`
``
390
`+
[ 9.50364421400426274, 9.53130618907631089],
`
``
391
`+
[ 5.48995325769805476, 8.47493103280052118]])
`
``
392
`+
np.testing.assert_array_almost_equal(actual, desired, decimal=15)
`
``
393
+
``
394
+
``
395
`+
def test_vonmises(self):
`
``
396
`+
np.random.seed(self.seed)
`
``
397
`+
actual = np.random.vonmises(mu = 1.23, kappa = 1.54, size = (3, 2))
`
``
398
`+
desired = np.array([[ 2.28567572673902042, 2.89163838442285037],
`
``
399
`+
[ 0.38198375564286025, 2.57638023113890746],
`
``
400
`+
[ 1.19153771588353052, 1.83509849681825354]])
`
``
401
`+
np.testing.assert_array_almost_equal(actual, desired, decimal=15)
`
``
402
+
``
403
`+
def test_wald(self):
`
``
404
`+
np.random.seed(self.seed)
`
``
405
`+
actual = np.random.wald(mean = 1.23, scale = 1.54, size = (3, 2))
`
``
406
`+
desired = np.array([[ 3.82935265715889983, 5.13125249184285526],
`
``
407
`+
[ 0.35045403618358717, 1.50832396872003538],
`
``
408
`+
[ 0.24124319895843183, 0.22031101461955038]])
`
``
409
`+
np.testing.assert_array_almost_equal(actual, desired, decimal=15)
`
``
410
+
``
411
`+
def test_weibull(self):
`
``
412
`+
np.random.seed(self.seed)
`
``
413
`+
actual = np.random.weibull(a = 1.23, size = (3, 2))
`
``
414
`+
desired = np.array([[ 0.97097342648766727, 0.91422896443565516],
`
``
415
`+
[ 1.89517770034962929, 1.91414357960479564],
`
``
416
`+
[ 0.67057783752390987, 1.39494046635066793]])
`
``
417
`+
np.testing.assert_array_almost_equal(actual, desired, decimal=15)
`
``
418
+
``
419
`+
def test_zipf(self):
`
``
420
`+
np.random.seed(self.seed)
`
``
421
`+
actual = np.random.zipf(a = 1.23, size = (3, 2))
`
``
422
`+
desired = np.array([[66, 29],
`
``
423
`+
[ 1, 1],
`
``
424
`+
[ 3, 13]])
`
``
425
`+
np.testing.assert_array_equal(actual, desired)
`
70
426
``
71
427
`if name == "main":
`
72
428
`run_module_suite()
`