GitHub - NVIDIA/apex: A PyTorch Extension: Tools for easy mixed precision and distributed training in Pytorch (original) (raw)

Introduction

This repository holds NVIDIA-maintained utilities to streamline mixed precision and distributed training in Pytorch. Some of the code here will be included in upstream Pytorch eventually. The intent of Apex is to make up-to-date utilities available to users as quickly as possible.

Installation

Each apex.contrib module requires one or more install options other than --cpp_ext and --cuda_ext. Note that contrib modules do not necessarily support stable PyTorch releases, some of them might only be compatible with nightlies.

Containers

NVIDIA PyTorch Containers are available on NGC: https://catalog.ngc.nvidia.com/orgs/nvidia/containers/pytorch. The containers come with all the custom extensions available at the moment.

See the NGC documentation for details such as:

From Source

To install Apex from source, we recommend using the nightly Pytorch obtainable from https://github.com/pytorch/pytorch.

The latest stable release obtainable from https://pytorch.org should also work.

We recommend installing Ninja to make compilation faster.

Linux

For performance and full functionality, we recommend installing Apex with CUDA and C++ extensions via

git clone https://github.com/NVIDIA/apex cd apex

if pip >= 23.1 (ref: https://pip.pypa.io/en/stable/news/#v23-1) which supports multiple --config-settings with the same key...

pip install -v --disable-pip-version-check --no-cache-dir --no-build-isolation --config-settings "--build-option=--cpp_ext" --config-settings "--build-option=--cuda_ext" ./

otherwise

pip install -v --disable-pip-version-check --no-cache-dir --no-build-isolation --global-option="--cpp_ext" --global-option="--cuda_ext" ./

To reduce the build time of APEX, parallel building can be enhanced via

NVCC_APPEND_FLAGS="--threads 4" pip install -v --disable-pip-version-check --no-cache-dir --no-build-isolation --config-settings "--build-option=--cpp_ext --cuda_ext --parallel 8" ./

When CPU cores or memory are limited, the --parallel option is generally preferred over --threads. See pull#1882 for more details.

APEX also supports a Python-only build via

pip install -v --disable-pip-version-check --no-build-isolation --no-cache-dir ./

A Python-only build omits:

[Experimental] Windows

pip install -v --disable-pip-version-check --no-cache-dir --no-build-isolation --config-settings "--build-option=--cpp_ext" --config-settings "--build-option=--cuda_ext" . may work if you were able to build Pytorch from source on your system. A Python-only build via pip install -v --no-cache-dir . is more likely to work.
If you installed Pytorch in a Conda environment, make sure to install Apex in that same environment.

Custom C++/CUDA Extensions and Install Options

If a requirement of a module is not met, then it will not be built.

Module Name Install Option Misc
apex_C --cpp_ext
amp_C --cuda_ext
syncbn --cuda_ext
fused_layer_norm_cuda --cuda_ext apex.normalization
mlp_cuda --cuda_ext
scaled_upper_triang_masked_softmax_cuda --cuda_ext
generic_scaled_masked_softmax_cuda --cuda_ext
scaled_masked_softmax_cuda --cuda_ext
fused_weight_gradient_mlp_cuda --cuda_ext Requires CUDA>=11
permutation_search_cuda --permutation_search apex.contrib.sparsity
bnp --bnp apex.contrib.groupbn
xentropy --xentropy apex.contrib.xentropy
focal_loss_cuda --focal_loss apex.contrib.focal_loss
fused_index_mul_2d --index_mul_2d apex.contrib.index_mul_2d
fused_adam_cuda --deprecated_fused_adam apex.contrib.optimizers
fused_lamb_cuda --deprecated_fused_lamb apex.contrib.optimizers
fast_layer_norm --fast_layer_norm apex.contrib.layer_norm. different from fused_layer_norm
fmhalib --fmha apex.contrib.fmha
fast_multihead_attn --fast_multihead_attn apex.contrib.multihead_attn
transducer_joint_cuda --transducer apex.contrib.transducer
transducer_loss_cuda --transducer apex.contrib.transducer
cudnn_gbn_lib --cudnn_gbn Requires cuDNN>=8.5, apex.contrib.cudnn_gbn
peer_memory_cuda --peer_memory apex.contrib.peer_memory
nccl_p2p_cuda --nccl_p2p Requires NCCL >= 2.10, apex.contrib.nccl_p2p
fast_bottleneck --fast_bottleneck Requires peer_memory_cuda and nccl_p2p_cuda, apex.contrib.bottleneck
fused_conv_bias_relu --fused_conv_bias_relu Requires cuDNN>=8.4, apex.contrib.conv_bias_relu