GitHub - open-mmlab/mim: MIM Installs OpenMMLab Packages (original) (raw)
MIM: MIM Installs OpenMMLab Packages
MIM provides a unified interface for launching and installing OpenMMLab projects and their extensions, and managing the OpenMMLab model zoo.
Major Features
- Package Management
You can use MIM to manage OpenMMLab codebases, install or uninstall them conveniently. - Model Management
You can use MIM to manage OpenMMLab model zoo, e.g., download checkpoints by name, search checkpoints that meet specific criteria. - Unified Entrypoint for Scripts
You can execute any script provided by all OpenMMLab codebases with unified commands. Train, test and inference become easier than ever. Besides, you can usegridsearch
command for vanilla hyper-parameter search.
License
This project is released under the Apache 2.0 license.
Changelog
v0.1.1 was released in 13/6/2021.
Customization
You can use .mimrc
for customization. Now we support customize default values of each sub-command. Please refer to customization.md for details.
Build custom projects with MIM
We provide some examples of how to build custom projects based on OpenMMLAB codebases and MIM in MIM-Example. Without worrying about copying codes and scripts from existing codebases, users can focus on developing new components and MIM helps integrate and run the new project.
Installation
Please refer to installation.md for installation.
Command
1. install
- command
install latest version of mmcv-full
mim install mmcv-full # wheel
install 1.5.0
mim install mmcv-full==1.5.0
install latest version of mmcls
mim install mmcls
install master branch
mim install git+https://github.com/open-mmlab/mmclassification.git
install local repo
git clone https://github.com/open-mmlab/mmclassification.git
cd mmclassification
mim install .
install extension based on OpenMMLab
mim install git+https://github.com/xxx/mmcls-project.git
- api
from mim import install
install mmcv
install('mmcv-full')
install mmcls will automatically install mmcv if it is not installed
install('mmcls')
install extension based on OpenMMLab
install('git+https://github.com/xxx/mmcls-project.git') 2. uninstall
- command
uninstall mmcv
mim uninstall mmcv-full
uninstall mmcls
mim uninstall mmcls
- api
from mim import uninstall
uninstall mmcv
uninstall('mmcv-full')
uninstall mmcls
uninstall('mmcls') 3. list
- command
mim list
mim list --all - api
from mim import list_package
list_package()
list_package(True) 4. search - command
mim search mmcls
mim search mmcls==0.23.0 --remote
mim search mmcls --config resnet18_8xb16_cifar10
mim search mmcls --model resnet
mim search mmcls --dataset cifar-10
mim search mmcls --valid-field
mim search mmcls --condition 'batch_size>45,epochs>100'
mim search mmcls --condition 'batch_size>45 epochs>100'
mim search mmcls --condition '128<batch_size<=256'
mim search mmcls --sort batch_size epochs
mim search mmcls --field epochs batch_size weight
mim search mmcls --exclude-field weight paper - api
from mim import get_model_info
get_model_info('mmcls')
get_model_info('mmcls==0.23.0', local=False)
get_model_info('mmcls', models=['resnet'])
get_model_info('mmcls', training_datasets=['cifar-10'])
get_model_info('mmcls', filter_conditions='batch_size>45,epochs>100')
get_model_info('mmcls', filter_conditions='batch_size>45 epochs>100')
get_model_info('mmcls', filter_conditions='128<batch_size<=256')
get_model_info('mmcls', sorted_fields=['batch_size', 'epochs'])
get_model_info('mmcls', shown_fields=['epochs', 'batch_size', 'weight']) 5. download - command
mim download mmcls --config resnet18_8xb16_cifar10
mim download mmcls --config resnet18_8xb16_cifar10 --dest . - api
from mim import download
download('mmcls', ['resnet18_8xb16_cifar10'])
download('mmcls', ['resnet18_8xb16_cifar10'], dest_root='.') 6. train - command
Train models on a single server with CPU by setting gpus
to 0 and
'launcher' to 'none' (if applicable). The training script of the
corresponding codebase will fail if it doesn't support CPU training.
mim train mmcls resnet101_b16x8_cifar10.py --work-dir tmp --gpus 0
Train models on a single server with one GPU
mim train mmcls resnet101_b16x8_cifar10.py --work-dir tmp --gpus 1
Train models on a single server with 4 GPUs and pytorch distributed
mim train mmcls resnet101_b16x8_cifar10.py --work-dir tmp --gpus 4 \
--launcher pytorch
Train models on a slurm HPC with one 8-GPU node
mim train mmcls resnet101_b16x8_cifar10.py --launcher slurm --gpus 8 \
--gpus-per-node 8 --partition partition_name --work-dir tmp
Print help messages of sub-command train
mim train -h
Print help messages of sub-command train and the training script of mmcls
mim train mmcls -h
- api
from mim import train
train(repo='mmcls', config='resnet18_8xb16_cifar10.py', gpus=0,
other_args=('--work-dir', 'tmp'))
train(repo='mmcls', config='resnet18_8xb16_cifar10.py', gpus=1,
other_args=('--work-dir', 'tmp'))
train(repo='mmcls', config='resnet18_8xb16_cifar10.py', gpus=4,
launcher='pytorch', other_args=('--work-dir', 'tmp'))
train(repo='mmcls', config='resnet18_8xb16_cifar10.py', gpus=8,
launcher='slurm', gpus_per_node=8, partition='partition_name',
other_args=('--work-dir', 'tmp'))
7. test
- command
Test models on a single server with 1 GPU, report accuracy
mim test mmcls resnet101_b16x8_cifar10.py --checkpoint \
tmp/epoch_3.pth --gpus 1 --metrics accuracy
Test models on a single server with 1 GPU, save predictions
mim test mmcls resnet101_b16x8_cifar10.py --checkpoint \
tmp/epoch_3.pth --gpus 1 --out tmp.pkl
Test models on a single server with 4 GPUs, pytorch distributed,
report accuracy
mim test mmcls resnet101_b16x8_cifar10.py --checkpoint \
tmp/epoch_3.pth --gpus 4 --launcher pytorch --metrics accuracy
Test models on a slurm HPC with one 8-GPU node, report accuracy
mim test mmcls resnet101_b16x8_cifar10.py --checkpoint \
tmp/epoch_3.pth --gpus 8 --metrics accuracy --partition \
partition_name --gpus-per-node 8 --launcher slurm
Print help messages of sub-command test
mim test -h
Print help messages of sub-command test and the testing script of mmcls
mim test mmcls -h
- api
from mim import test
test(repo='mmcls', config='resnet101_b16x8_cifar10.py',
checkpoint='tmp/epoch_3.pth', gpus=1, other_args=('--metrics', 'accuracy'))
test(repo='mmcls', config='resnet101_b16x8_cifar10.py',
checkpoint='tmp/epoch_3.pth', gpus=1, other_args=('--out', 'tmp.pkl'))
test(repo='mmcls', config='resnet101_b16x8_cifar10.py',
checkpoint='tmp/epoch_3.pth', gpus=4, launcher='pytorch',
other_args=('--metrics', 'accuracy'))
test(repo='mmcls', config='resnet101_b16x8_cifar10.py',
checkpoint='tmp/epoch_3.pth', gpus=8, partition='partition_name',
launcher='slurm', gpus_per_node=8, other_args=('--metrics', 'accuracy')) 8. run - command
Get the Flops of a model
mim run mmcls get_flops resnet101_b16x8_cifar10.py
Publish a model
mim run mmcls publish_model input.pth output.pth
Train models on a slurm HPC with one GPU
srun -p partition --gres=gpu:1 mim run mmcls train \
resnet101_b16x8_cifar10.py --work-dir tmp
Test models on a slurm HPC with one GPU, report accuracy
srun -p partition --gres=gpu:1 mim run mmcls test \
resnet101_b16x8_cifar10.py tmp/epoch_3.pth --metrics accuracy
Print help messages of sub-command run
mim run -h
Print help messages of sub-command run, list all available scripts in
codebase mmcls
mim run mmcls -h
Print help messages of sub-command run, print the help message of
training script in mmcls
mim run mmcls train -h
- api
from mim import run
run(repo='mmcls', command='get_flops',
other_args=('resnet101_b16x8_cifar10.py',))
run(repo='mmcls', command='publish_model',
other_args=('input.pth', 'output.pth'))
run(repo='mmcls', command='train',
other_args=('resnet101_b16x8_cifar10.py', '--work-dir', 'tmp'))
run(repo='mmcls', command='test',
other_args=('resnet101_b16x8_cifar10.py', 'tmp/epoch_3.pth', '--metrics accuracy')) 9. gridsearch - command
Parameter search on a single server with CPU by setting gpus
to 0 and
'launcher' to 'none' (if applicable). The training script of the
corresponding codebase will fail if it doesn't support CPU training.
mim gridsearch mmcls resnet101_b16x8_cifar10.py --work-dir tmp --gpus 0 \
--search-args '--optimizer.lr 1e-2 1e-3'
Parameter search with on a single server with one GPU, search learning
rate
mim gridsearch mmcls resnet101_b16x8_cifar10.py --work-dir tmp --gpus 1 \
--search-args '--optimizer.lr 1e-2 1e-3'
Parameter search with on a single server with one GPU, search
weight_decay
mim gridsearch mmcls resnet101_b16x8_cifar10.py --work-dir tmp --gpus 1 \
--search-args '--optimizer.weight_decay 1e-3 1e-4'
Parameter search with on a single server with one GPU, search learning
rate and weight_decay
mim gridsearch mmcls resnet101_b16x8_cifar10.py --work-dir tmp --gpus 1 \
--search-args '--optimizer.lr 1e-2 1e-3 --optimizer.weight_decay 1e-3 \
1e-4'
Parameter search on a slurm HPC with one 8-GPU node, search learning
rate and weight_decay
mim gridsearch mmcls resnet101_b16x8_cifar10.py --work-dir tmp --gpus 8 \
--partition partition_name --gpus-per-node 8 --launcher slurm \
--search-args '--optimizer.lr 1e-2 1e-3 --optimizer.weight_decay 1e-3 \
1e-4'
Parameter search on a slurm HPC with one 8-GPU node, search learning
rate and weight_decay, max parallel jobs is 2
mim gridsearch mmcls resnet101_b16x8_cifar10.py --work-dir tmp --gpus 8 \
--partition partition_name --gpus-per-node 8 --launcher slurm \
--max-jobs 2 --search-args '--optimizer.lr 1e-2 1e-3 \
--optimizer.weight_decay 1e-3 1e-4'
Print the help message of sub-command search
mim gridsearch -h
Print the help message of sub-command search and the help message of the
training script of codebase mmcls
mim gridsearch mmcls -h
- api
from mim import gridsearch
gridsearch(repo='mmcls', config='resnet101_b16x8_cifar10.py', gpus=0,
search_args='--optimizer.lr 1e-2 1e-3',
other_args=('--work-dir', 'tmp'))
gridsearch(repo='mmcls', config='resnet101_b16x8_cifar10.py', gpus=1,
search_args='--optimizer.lr 1e-2 1e-3',
other_args=('--work-dir', 'tmp'))
gridsearch(repo='mmcls', config='resnet101_b16x8_cifar10.py', gpus=1,
search_args='--optimizer.weight_decay 1e-3 1e-4',
other_args=('--work-dir', 'tmp'))
gridsearch(repo='mmcls', config='resnet101_b16x8_cifar10.py', gpus=1,
search_args='--optimizer.lr 1e-2 1e-3 --optimizer.weight_decay'
'1e-3 1e-4',
other_args=('--work-dir', 'tmp'))
gridsearch(repo='mmcls', config='resnet101_b16x8_cifar10.py', gpus=8,
partition='partition_name', gpus_per_node=8, launcher='slurm',
search_args='--optimizer.lr 1e-2 1e-3 --optimizer.weight_decay'
' 1e-3 1e-4',
other_args=('--work-dir', 'tmp'))
gridsearch(repo='mmcls', config='resnet101_b16x8_cifar10.py', gpus=8,
partition='partition_name', gpus_per_node=8, launcher='slurm',
max_workers=2,
search_args='--optimizer.lr 1e-2 1e-3 --optimizer.weight_decay'
' 1e-3 1e-4',
other_args=('--work-dir', 'tmp'))
Contributing
We appreciate all contributions to improve mim. Please refer to CONTRIBUTING.md for the contributing guideline.
License
This project is released under the Apache 2.0 license.
Projects in OpenMMLab
- MMEngine: OpenMMLab foundational library for training deep learning models.
- MMCV: OpenMMLab foundational library for computer vision.
- MMEval: A unified evaluation library for multiple machine learning libraries.
- MMPreTrain: OpenMMLab pre-training toolbox and benchmark.
- MMagic: OpenMMLab Advanced, Generative and Intelligent Creation toolbox.
- MMDetection: OpenMMLab detection toolbox and benchmark.
- MMYOLO: OpenMMLab YOLO series toolbox and benchmark.
- MMDetection3D: OpenMMLab's next-generation platform for general 3D object detection.
- MMRotate: OpenMMLab rotated object detection toolbox and benchmark.
- MMTracking: OpenMMLab video perception toolbox and benchmark.
- MMPose: OpenMMLab pose estimation toolbox and benchmark.
- MMSegmentation: OpenMMLab semantic segmentation toolbox and benchmark.
- MMOCR: OpenMMLab text detection, recognition, and understanding toolbox.
- MMHuman3D: OpenMMLab 3D human parametric model toolbox and benchmark.
- MMSelfSup: OpenMMLab self-supervised learning toolbox and benchmark.
- MMFewShot: OpenMMLab fewshot learning toolbox and benchmark.
- MMAction2: OpenMMLab's next-generation action understanding toolbox and benchmark.
- MMFlow: OpenMMLab optical flow toolbox and benchmark.
- MMDeploy: OpenMMLab model deployment framework.
- MMRazor: OpenMMLab model compression toolbox and benchmark.
- Playground: A central hub for gathering and showcasing amazing projects built upon OpenMMLab.