GitHub - paiml/paiml-mcp-agent-toolkit: Pragmatic AI Labs MCP Agent Toolkit - An MCP Server designed to make code with agents more deterministic (original) (raw)
PAIML MCP Agent Toolkit
Zero-configuration AI context generation system that analyzes any codebase instantly through CLI, MCP, or HTTP interfaces. Built by Pragmatic AI Labs.
๐ Installation
curl -sSfL https://raw.githubusercontent.com/paiml/paiml-mcp-agent-toolkit/master/scripts/install.sh | sh
๐ Tool Usage
CLI Interface
Zero-configuration context generation
pmat context # Auto-detects language pmat context --format json # JSON output pmat context rust # Force language
Code analysis
pmat analyze complexity --top-files 5 # Complexity analysis
pmat analyze churn --days 30 # Git history analysis
pmat analyze dag --target-nodes 25 # Dependency graph
pmat analyze dead-code --format json # Dead code detection
pmat analyze satd --top-files 10 # Technical debt
pmat analyze deep-context --format json # Comprehensive analysis
pmat analyze big-o # Big-O complexity analysis
pmat analyze makefile-lint # Makefile quality linting
pmat analyze proof-annotations # Provability analysis
pmat analyze graph-metrics # Graph centrality metrics
pmat analyze name-similarity "function_name" # Semantic name search
Project scaffolding
pmat scaffold rust --templates makefile,readme,gitignore pmat list # Available templates
Refactoring engine
pmat refactor interactive # Interactive refactoring pmat refactor serve --config refactor.json # Batch refactoring pmat refactor status # Check refactor progress pmat refactor resume # Resume from checkpoint
Demo and visualization
pmat demo --format table # CLI demo pmat demo --web --port 8080 # Web interface pmat demo --repo https://github.com/user/repo # Analyze GitHub repo
๐ซ See CLI usage in action
Context and code analysis:
MCP Integration (Claude Code)
Add to Claude Code
claude mcp add paiml-toolkit ~/.local/bin/pmat
๐ซ See Claude Code usage in action
Available MCP tools:
generate_template
- Generate project files from templatesscaffold_project
- Generate complete project structureanalyze_complexity
- Code complexity metricsanalyze_code_churn
- Git history analysisanalyze_dag
- Dependency graph generationanalyze_dead_code
- Dead code detectionanalyze_deep_context
- Comprehensive analysisgenerate_context
- Zero-config context generationanalyze_big_o
- Big-O complexity analysis with confidence scoresanalyze_makefile_lint
- Lint Makefiles with 50+ quality rulesanalyze_proof_annotations
- Lightweight formal verificationanalyze_graph_metrics
- Graph centrality and PageRank analysisrefactor_interactive
- Interactive refactoring with explanations
HTTP API
Start server
pmat serve --port 8080 --cors
API endpoints
curl "http://localhost:8080/health" curl "http://localhost:8080/api/v1/analyze/complexity?top_files=5" curl "http://localhost:8080/api/v1/templates"
POST analysis
curl -X POST "http://localhost:8080/api/v1/analyze/deep-context"
-H "Content-Type: application/json"
-d '{"project_path":"./","include":["ast","complexity","churn"]}'
๐ง Supported Languages
- Rust - Complete AST analysis, complexity metrics
- TypeScript/JavaScript - Full parsing and analysis
- Python - AST analysis and code metrics
- C/C++ - Goto tracking, macro analysis, memory safety indicators
- Cython - Hybrid Python/C analysis
๐ Documentation
Feature Documentation
- Feature Overview - Complete feature index
- Makefile Linter - 50+ rules for Makefile quality
- Emit-Refactor Engine - Real-time defect detection & refactoring
- Excellence Tracker - Code quality metrics tracking
- Technical Debt Gradient - Quantitative debt measurement
- MCP Protocol - AI agent integration guide
Additional Features
- Code Quality Tools
pmat analyze makefile-lint
- Lint Makefiles with 50+ quality rulespmat excellence-tracker
- Track code quality metrics over timepmat refactor serve
- Batch refactoring with checkpointspmat refactor interactive
- Interactive refactoring with explanations
- Advanced Analysis
pmat analyze tdg
- Calculate Technical Debt Gradientpmat analyze proof-annotations
- Lightweight formal verificationpmat analyze defect-prediction
- ML-based defect predictionpmat analyze name-similarity
- Semantic name search with embeddingspmat analyze big-o
- Big-O complexity with confidence scorespmat analyze graph-metrics
- PageRank and centrality metricspmat analyze incremental-coverage
- Coverage changes since base branch
๐ Output Formats
- JSON - Structured data for tools and APIs
- Markdown - Human-readable reports
- SARIF - Static analysis format for IDEs
- Mermaid - Dependency graphs and diagrams
๐ฏ Use Cases
For AI Agents
- Context Generation: Give AI perfect project understanding
- Code Analysis: Deterministic metrics and facts
- Template Generation: Scaffolding with best practices
For Developers
- Code Reviews: Automated complexity and quality analysis
- Technical Debt: SATD detection and prioritization
- Onboarding: Quick project understanding
- CI/CD: Integrate quality gates and analysis
For Teams
- Documentation: Auto-generated project overviews
- Quality Gates: Automated quality scoring
- Dependency Analysis: Visual dependency graphs
- Project Health: Comprehensive health metrics
๐ Documentation
๐งช Testing
The project uses a distributed test architecture for fast feedback:
Run specific test suites
make test-unit # <10s - Core logic tests make test-services # <30s - Service integration make test-protocols # <45s - Protocol validation make test-e2e # <120s - Full system tests make test-performance # Performance regression
Run all tests in parallel
make test-all
Coverage analysis
make coverage-stratified
๐ค Contributing
- Fork the repository
- Create a feature branch
- Run
make test-fast
for validation - Submit a pull request
๐ License
MIT License - see LICENSE file for details.
Built with โค๏ธ by Pragmatic AI Labs