GitHub - paiml/paiml-mcp-agent-toolkit: Pragmatic AI Labs MCP Agent Toolkit - An MCP Server designed to make code with agents more deterministic (original) (raw)

PAIML MCP Agent Toolkit

CI/CD MCP Compatible License: MIT

Zero-configuration AI context generation system that analyzes any codebase instantly through CLI, MCP, or HTTP interfaces. Built by Pragmatic AI Labs.

๐Ÿš€ Installation

curl -sSfL https://raw.githubusercontent.com/paiml/paiml-mcp-agent-toolkit/master/scripts/install.sh | sh

๐Ÿ“‹ Tool Usage

CLI Interface

Zero-configuration context generation

pmat context # Auto-detects language pmat context --format json # JSON output pmat context rust # Force language

Code analysis

pmat analyze complexity --top-files 5 # Complexity analysis pmat analyze churn --days 30 # Git history analysis
pmat analyze dag --target-nodes 25 # Dependency graph pmat analyze dead-code --format json # Dead code detection pmat analyze satd --top-files 10 # Technical debt pmat analyze deep-context --format json # Comprehensive analysis pmat analyze big-o # Big-O complexity analysis pmat analyze makefile-lint # Makefile quality linting pmat analyze proof-annotations # Provability analysis pmat analyze graph-metrics # Graph centrality metrics pmat analyze name-similarity "function_name" # Semantic name search

Project scaffolding

pmat scaffold rust --templates makefile,readme,gitignore pmat list # Available templates

Refactoring engine

pmat refactor interactive # Interactive refactoring pmat refactor serve --config refactor.json # Batch refactoring pmat refactor status # Check refactor progress pmat refactor resume # Resume from checkpoint

Demo and visualization

pmat demo --format table # CLI demo pmat demo --web --port 8080 # Web interface pmat demo --repo https://github.com/user/repo # Analyze GitHub repo

๐Ÿ’ซ See CLI usage in action
Context and code analysis:

Running demos/visualization:

MCP Integration (Claude Code)

Add to Claude Code

claude mcp add paiml-toolkit ~/.local/bin/pmat

๐Ÿ’ซ See Claude Code usage in action

Available MCP tools:

HTTP API

Start server

pmat serve --port 8080 --cors

API endpoints

curl "http://localhost:8080/health" curl "http://localhost:8080/api/v1/analyze/complexity?top_files=5" curl "http://localhost:8080/api/v1/templates"

POST analysis

curl -X POST "http://localhost:8080/api/v1/analyze/deep-context"
-H "Content-Type: application/json"
-d '{"project_path":"./","include":["ast","complexity","churn"]}'

๐Ÿ”ง Supported Languages

๐Ÿ“š Documentation

Feature Documentation

Additional Features

๐Ÿ“Š Output Formats

๐ŸŽฏ Use Cases

For AI Agents

For Developers

For Teams

๐Ÿ“š Documentation

๐Ÿงช Testing

The project uses a distributed test architecture for fast feedback:

Run specific test suites

make test-unit # <10s - Core logic tests make test-services # <30s - Service integration make test-protocols # <45s - Protocol validation make test-e2e # <120s - Full system tests make test-performance # Performance regression

Run all tests in parallel

make test-all

Coverage analysis

make coverage-stratified

๐Ÿค Contributing

  1. Fork the repository
  2. Create a feature branch
  3. Run make test-fast for validation
  4. Submit a pull request

๐Ÿ“„ License

MIT License - see LICENSE file for details.


Built with โค๏ธ by Pragmatic AI Labs