BUG/API: concat with empty DataFrames or all-NA columns (#43507) · pandas-dev/pandas@084c543 (original) (raw)

`@@ -140,7 +140,7 @@ def test_append_empty_dataframe(self):

`

140

140

`expected = df1.copy()

`

141

141

`tm.assert_frame_equal(result, expected)

`

142

142

``

143

``

`-

def test_append_dtypes(self, using_array_manager):

`

``

143

`+

def test_append_dtypes(self):

`

144

144

``

145

145

`# GH 5754

`

146

146

`# row appends of different dtypes (so need to do by-item)

`

`@@ -164,10 +164,7 @@ def test_append_dtypes(self, using_array_manager):

`

164

164

`expected = DataFrame(

`

165

165

` {"bar": Series([Timestamp("20130101"), np.nan], dtype="M8[ns]")}

`

166

166

` )

`

167

``

`-

if using_array_manager:

`

168

``

`-

TODO(ArrayManager) decide on exact casting rules in concat

`

169

``

`-

With ArrayManager, all-NaN float is not ignored

`

170

``

`-

expected = expected.astype(object)

`

``

167

`+

expected = expected.astype(object)

`

171

168

`tm.assert_frame_equal(result, expected)

`

172

169

``

173

170

`df1 = DataFrame({"bar": Timestamp("20130101")}, index=range(1))

`

`@@ -176,9 +173,7 @@ def test_append_dtypes(self, using_array_manager):

`

176

173

`expected = DataFrame(

`

177

174

` {"bar": Series([Timestamp("20130101"), np.nan], dtype="M8[ns]")}

`

178

175

` )

`

179

``

`-

if using_array_manager:

`

180

``

`-

With ArrayManager, all-NaN float is not ignored

`

181

``

`-

expected = expected.astype(object)

`

``

176

`+

expected = expected.astype(object)

`

182

177

`tm.assert_frame_equal(result, expected)

`

183

178

``

184

179

`df1 = DataFrame({"bar": np.nan}, index=range(1))

`

`@@ -187,9 +182,7 @@ def test_append_dtypes(self, using_array_manager):

`

187

182

`expected = DataFrame(

`

188

183

` {"bar": Series([np.nan, Timestamp("20130101")], dtype="M8[ns]")}

`

189

184

` )

`

190

``

`-

if using_array_manager:

`

191

``

`-

With ArrayManager, all-NaN float is not ignored

`

192

``

`-

expected = expected.astype(object)

`

``

185

`+

expected = expected.astype(object)

`

193

186

`tm.assert_frame_equal(result, expected)

`

194

187

``

195

188

`df1 = DataFrame({"bar": Timestamp("20130101")}, index=range(1))

`