DOC: re-use storage_options (#37953) · pandas-dev/pandas@492c5e0 (original) (raw)

`@@ -118,7 +118,7 @@

`

118

118

`)

`

119

119

`from pandas.core.dtypes.missing import isna, notna

`

120

120

``

121

``

`-

from pandas.core import algorithms, common as com, nanops, ops

`

``

121

`+

from pandas.core import algorithms, common as com, generic, nanops, ops

`

122

122

`from pandas.core.accessor import CachedAccessor

`

123

123

`from pandas.core.aggregation import (

`

124

124

`aggregate,

`

`@@ -2066,6 +2066,7 @@ def _from_arrays(

`

2066

2066

` )

`

2067

2067

`return cls(mgr)

`

2068

2068

``

``

2069

`+

@doc(storage_options=generic._shared_docs["storage_options"])

`

2069

2070

`@deprecate_kwarg(old_arg_name="fname", new_arg_name="path")

`

2070

2071

`def to_stata(

`

2071

2072

`self,

`

`@@ -2118,7 +2119,7 @@ def to_stata(

`

2118

2119

` variable_labels : dict

`

2119

2120

` Dictionary containing columns as keys and variable labels as

`

2120

2121

` values. Each label must be 80 characters or smaller.

`

2121

``

`-

version : {114, 117, 118, 119, None}, default 114

`

``

2122

`+

version : {{114, 117, 118, 119, None}}, default 114

`

2122

2123

` Version to use in the output dta file. Set to None to let pandas

`

2123

2124

` decide between 118 or 119 formats depending on the number of

`

2124

2125

` columns in the frame. Version 114 can be read by Stata 10 and

`

`@@ -2147,23 +2148,17 @@ def to_stata(

`

2147

2148

` compression : str or dict, default 'infer'

`

2148

2149

` For on-the-fly compression of the output dta. If string, specifies

`

2149

2150

` compression mode. If dict, value at key 'method' specifies

`

2150

``

`-

compression mode. Compression mode must be one of {'infer', 'gzip',

`

2151

``

`-

'bz2', 'zip', 'xz', None}. If compression mode is 'infer' and

`

``

2151

`+

compression mode. Compression mode must be one of {{'infer', 'gzip',

`

``

2152

`+

'bz2', 'zip', 'xz', None}}. If compression mode is 'infer' and

`

2152

2153

`` fname is path-like, then detect compression from the following

``

2153

2154

` extensions: '.gz', '.bz2', '.zip', or '.xz' (otherwise no

`

2154

``

`-

compression). If dict and compression mode is one of {'zip',

`

2155

``

`-

'gzip', 'bz2'}, or inferred as one of the above, other entries

`

``

2155

`+

compression). If dict and compression mode is one of {{'zip',

`

``

2156

`+

'gzip', 'bz2'}}, or inferred as one of the above, other entries

`

2156

2157

` passed as additional compression options.

`

2157

2158

``

2158

2159

` .. versionadded:: 1.1.0

`

2159

2160

``

2160

``

`-

storage_options : dict, optional

`

2161

``

`-

Extra options that make sense for a particular storage connection, e.g.

`

2162

``

`-

host, port, username, password, etc., if using a URL that will

`

2163

``


 be parsed by ``fsspec``, e.g., starting "s3://", "gcs://". An error

2164

``

`-

will be raised if providing this argument with a local path or

`

2165

``

`-

a file-like buffer. See the fsspec and backend storage implementation

`

2166

``

`-

docs for the set of allowed keys and values.

`

``

2161

`+

{storage_options}

`

2167

2162

``

2168

2163

` .. versionadded:: 1.2.0

`

2169

2164

``

`@@ -2186,9 +2181,9 @@ def to_stata(

`

2186

2181

``

2187

2182

` Examples

`

2188

2183

` --------

`

2189

``

`-

df = pd.DataFrame({'animal': ['falcon', 'parrot', 'falcon',

`

``

2184

`+

df = pd.DataFrame({{'animal': ['falcon', 'parrot', 'falcon',

`

2190

2185

` ... 'parrot'],

`

2191

``

`-

... 'speed': [350, 18, 361, 15]})

`

``

2186

`+

... 'speed': [350, 18, 361, 15]}})

`

2192

2187

` >>> df.to_stata('animals.dta') # doctest: +SKIP

`

2193

2188

` """

`

2194

2189

`if version not in (114, 117, 118, 119, None):

`

`@@ -2255,6 +2250,7 @@ def to_feather(self, path: FilePathOrBuffer[AnyStr], **kwargs) -> None:

`

2255

2250

`@doc(

`

2256

2251

`Series.to_markdown,

`

2257

2252

`klass=_shared_doc_kwargs["klass"],

`

``

2253

`+

storage_options=_shared_docs["storage_options"],

`

2258

2254

`examples="""Examples

`

2259

2255

` --------

`

2260

2256

` >>> df = pd.DataFrame(

`

`@@ -2307,6 +2303,7 @@ def to_markdown(

`

2307

2303

`handles.handle.writelines(result)

`

2308

2304

`return None

`

2309

2305

``

``

2306

`+

@doc(storage_options=generic._shared_docs["storage_options"])

`

2310

2307

`@deprecate_kwarg(old_arg_name="fname", new_arg_name="path")

`

2311

2308

`def to_parquet(

`

2312

2309

`self,

`

`@@ -2340,12 +2337,12 @@ def to_parquet(

`

2340

2337

``

2341

2338

` Previously this was "fname"

`

2342

2339

``

2343

``

`-

engine : {'auto', 'pyarrow', 'fastparquet'}, default 'auto'

`

``

2340

`+

engine : {{'auto', 'pyarrow', 'fastparquet'}}, default 'auto'

`

2344

2341

` Parquet library to use. If 'auto', then the option

`

2345

2342

``` io.parquet.engine is used. The default io.parquet.engine


`2346`

`2343`

` behavior is to try 'pyarrow', falling back to 'fastparquet' if

`

`2347`

`2344`

` 'pyarrow' is unavailable.

`

`2348`

``

`-

compression : {'snappy', 'gzip', 'brotli', None}, default 'snappy'

`

``

`2345`

`+

compression : {{'snappy', 'gzip', 'brotli', None}}, default 'snappy'

`

`2349`

`2346`

```  Name of the compression to use. Use ``None`` for no compression.

2350

2347

` index : bool, default None

`

2351

2348

``` If True, include the dataframe's index(es) in the file output.


`@@ -2365,13 +2362,7 @@ def to_parquet(

`

`2365`

`2362`

``

`2366`

`2363`

` .. versionadded:: 0.24.0

`

`2367`

`2364`

``

`2368`

``

`-

storage_options : dict, optional

`

`2369`

``

`-

Extra options that make sense for a particular storage connection, e.g.

`

`2370`

``

`-

host, port, username, password, etc., if using a URL that will

`

`2371`

``

``` -

be parsed by ``fsspec``, e.g., starting "s3://", "gcs://". An error

2372

``

`-

will be raised if providing this argument with a local path or

`

2373

``

`-

a file-like buffer. See the fsspec and backend storage implementation

`

2374

``

`-

docs for the set of allowed keys and values.

`

``

2365

`+

{storage_options}

`

2375

2366

``

2376

2367

` .. versionadded:: 1.2.0

`

2377

2368

``

`@@ -2398,7 +2389,7 @@ def to_parquet(

`

2398

2389

``

2399

2390

` Examples

`

2400

2391

` --------

`

2401

``

`-

df = pd.DataFrame(data={'col1': [1, 2], 'col2': [3, 4]})

`

``

2392

`+

df = pd.DataFrame(data={{'col1': [1, 2], 'col2': [3, 4]}})

`

2402

2393

` >>> df.to_parquet('df.parquet.gzip',

`

2403

2394

` ... compression='gzip') # doctest: +SKIP

`

2404

2395

` >>> pd.read_parquet('df.parquet.gzip') # doctest: +SKIP

`