DOC: re-use storage_options (#37953) · pandas-dev/pandas@492c5e0 (original) (raw)
`@@ -118,7 +118,7 @@
`
118
118
`)
`
119
119
`from pandas.core.dtypes.missing import isna, notna
`
120
120
``
121
``
`-
from pandas.core import algorithms, common as com, nanops, ops
`
``
121
`+
from pandas.core import algorithms, common as com, generic, nanops, ops
`
122
122
`from pandas.core.accessor import CachedAccessor
`
123
123
`from pandas.core.aggregation import (
`
124
124
`aggregate,
`
`@@ -2066,6 +2066,7 @@ def _from_arrays(
`
2066
2066
` )
`
2067
2067
`return cls(mgr)
`
2068
2068
``
``
2069
`+
@doc(storage_options=generic._shared_docs["storage_options"])
`
2069
2070
`@deprecate_kwarg(old_arg_name="fname", new_arg_name="path")
`
2070
2071
`def to_stata(
`
2071
2072
`self,
`
`@@ -2118,7 +2119,7 @@ def to_stata(
`
2118
2119
` variable_labels : dict
`
2119
2120
` Dictionary containing columns as keys and variable labels as
`
2120
2121
` values. Each label must be 80 characters or smaller.
`
2121
``
`-
version : {114, 117, 118, 119, None}, default 114
`
``
2122
`+
version : {{114, 117, 118, 119, None}}, default 114
`
2122
2123
` Version to use in the output dta file. Set to None to let pandas
`
2123
2124
` decide between 118 or 119 formats depending on the number of
`
2124
2125
` columns in the frame. Version 114 can be read by Stata 10 and
`
`@@ -2147,23 +2148,17 @@ def to_stata(
`
2147
2148
` compression : str or dict, default 'infer'
`
2148
2149
` For on-the-fly compression of the output dta. If string, specifies
`
2149
2150
` compression mode. If dict, value at key 'method' specifies
`
2150
``
`-
compression mode. Compression mode must be one of {'infer', 'gzip',
`
2151
``
`-
'bz2', 'zip', 'xz', None}. If compression mode is 'infer' and
`
``
2151
`+
compression mode. Compression mode must be one of {{'infer', 'gzip',
`
``
2152
`+
'bz2', 'zip', 'xz', None}}. If compression mode is 'infer' and
`
2152
2153
`` fname
is path-like, then detect compression from the following
``
2153
2154
` extensions: '.gz', '.bz2', '.zip', or '.xz' (otherwise no
`
2154
``
`-
compression). If dict and compression mode is one of {'zip',
`
2155
``
`-
'gzip', 'bz2'}, or inferred as one of the above, other entries
`
``
2155
`+
compression). If dict and compression mode is one of {{'zip',
`
``
2156
`+
'gzip', 'bz2'}}, or inferred as one of the above, other entries
`
2156
2157
` passed as additional compression options.
`
2157
2158
``
2158
2159
` .. versionadded:: 1.1.0
`
2159
2160
``
2160
``
`-
storage_options : dict, optional
`
2161
``
`-
Extra options that make sense for a particular storage connection, e.g.
`
2162
``
`-
host, port, username, password, etc., if using a URL that will
`
2163
``
be parsed by ``fsspec``, e.g., starting "s3://", "gcs://". An error
2164
``
`-
will be raised if providing this argument with a local path or
`
2165
``
`-
a file-like buffer. See the fsspec and backend storage implementation
`
2166
``
`-
docs for the set of allowed keys and values.
`
``
2161
`+
{storage_options}
`
2167
2162
``
2168
2163
` .. versionadded:: 1.2.0
`
2169
2164
``
`@@ -2186,9 +2181,9 @@ def to_stata(
`
2186
2181
``
2187
2182
` Examples
`
2188
2183
` --------
`
2189
``
`-
df = pd.DataFrame({'animal': ['falcon', 'parrot', 'falcon',
`
``
2184
`+
df = pd.DataFrame({{'animal': ['falcon', 'parrot', 'falcon',
`
2190
2185
` ... 'parrot'],
`
2191
``
`-
... 'speed': [350, 18, 361, 15]})
`
``
2186
`+
... 'speed': [350, 18, 361, 15]}})
`
2192
2187
` >>> df.to_stata('animals.dta') # doctest: +SKIP
`
2193
2188
` """
`
2194
2189
`if version not in (114, 117, 118, 119, None):
`
`@@ -2255,6 +2250,7 @@ def to_feather(self, path: FilePathOrBuffer[AnyStr], **kwargs) -> None:
`
2255
2250
`@doc(
`
2256
2251
`Series.to_markdown,
`
2257
2252
`klass=_shared_doc_kwargs["klass"],
`
``
2253
`+
storage_options=_shared_docs["storage_options"],
`
2258
2254
`examples="""Examples
`
2259
2255
` --------
`
2260
2256
` >>> df = pd.DataFrame(
`
`@@ -2307,6 +2303,7 @@ def to_markdown(
`
2307
2303
`handles.handle.writelines(result)
`
2308
2304
`return None
`
2309
2305
``
``
2306
`+
@doc(storage_options=generic._shared_docs["storage_options"])
`
2310
2307
`@deprecate_kwarg(old_arg_name="fname", new_arg_name="path")
`
2311
2308
`def to_parquet(
`
2312
2309
`self,
`
`@@ -2340,12 +2337,12 @@ def to_parquet(
`
2340
2337
``
2341
2338
` Previously this was "fname"
`
2342
2339
``
2343
``
`-
engine : {'auto', 'pyarrow', 'fastparquet'}, default 'auto'
`
``
2340
`+
engine : {{'auto', 'pyarrow', 'fastparquet'}}, default 'auto'
`
2344
2341
` Parquet library to use. If 'auto', then the option
`
2345
2342
``` io.parquet.engine
is used. The default io.parquet.engine
`2346`
`2343`
` behavior is to try 'pyarrow', falling back to 'fastparquet' if
`
`2347`
`2344`
` 'pyarrow' is unavailable.
`
`2348`
``
`-
compression : {'snappy', 'gzip', 'brotli', None}, default 'snappy'
`
``
`2345`
`+
compression : {{'snappy', 'gzip', 'brotli', None}}, default 'snappy'
`
`2349`
`2346`
``` Name of the compression to use. Use ``None`` for no compression.
2350
2347
` index : bool, default None
`
2351
2348
``` If True
, include the dataframe's index(es) in the file output.
`@@ -2365,13 +2362,7 @@ def to_parquet(
`
`2365`
`2362`
``
`2366`
`2363`
` .. versionadded:: 0.24.0
`
`2367`
`2364`
``
`2368`
``
`-
storage_options : dict, optional
`
`2369`
``
`-
Extra options that make sense for a particular storage connection, e.g.
`
`2370`
``
`-
host, port, username, password, etc., if using a URL that will
`
`2371`
``
``` -
be parsed by ``fsspec``, e.g., starting "s3://", "gcs://". An error
2372
``
`-
will be raised if providing this argument with a local path or
`
2373
``
`-
a file-like buffer. See the fsspec and backend storage implementation
`
2374
``
`-
docs for the set of allowed keys and values.
`
``
2365
`+
{storage_options}
`
2375
2366
``
2376
2367
` .. versionadded:: 1.2.0
`
2377
2368
``
`@@ -2398,7 +2389,7 @@ def to_parquet(
`
2398
2389
``
2399
2390
` Examples
`
2400
2391
` --------
`
2401
``
`-
df = pd.DataFrame(data={'col1': [1, 2], 'col2': [3, 4]})
`
``
2392
`+
df = pd.DataFrame(data={{'col1': [1, 2], 'col2': [3, 4]}})
`
2402
2393
` >>> df.to_parquet('df.parquet.gzip',
`
2403
2394
` ... compression='gzip') # doctest: +SKIP
`
2404
2395
` >>> pd.read_parquet('df.parquet.gzip') # doctest: +SKIP
`