ASV: avoid "H" and "S" freq deprecations (#55921) · pandas-dev/pandas@b2d9ec1 (original) (raw)
18 files changed
lines changed
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -50,9 +50,9 @@ def setup(self, unique, sort, dtype): | ||
50 | 50 | "float": pd.Index(np.random.randn(N), dtype="float64"), |
51 | 51 | "object_str": string_index, |
52 | 52 | "object": pd.Index(np.arange(N), dtype="object"), |
53 | -"datetime64[ns]": pd.date_range("2011-01-01", freq="H", periods=N), | |
53 | +"datetime64[ns]": pd.date_range("2011-01-01", freq="h", periods=N), | |
54 | 54 | "datetime64[ns, tz]": pd.date_range( |
55 | -"2011-01-01", freq="H", periods=N, tz="Asia/Tokyo" | |
55 | +"2011-01-01", freq="h", periods=N, tz="Asia/Tokyo" | |
56 | 56 | ), |
57 | 57 | "Int64": pd.array(np.arange(N), dtype="Int64"), |
58 | 58 | "boolean": pd.array(np.random.randint(0, 2, N), dtype="boolean"), |
@@ -93,9 +93,9 @@ def setup(self, unique, keep, dtype): | ||
93 | 93 | "uint": pd.Index(np.arange(N), dtype="uint64"), |
94 | 94 | "float": pd.Index(np.random.randn(N), dtype="float64"), |
95 | 95 | "string": tm.makeStringIndex(N), |
96 | -"datetime64[ns]": pd.date_range("2011-01-01", freq="H", periods=N), | |
96 | +"datetime64[ns]": pd.date_range("2011-01-01", freq="h", periods=N), | |
97 | 97 | "datetime64[ns, tz]": pd.date_range( |
98 | -"2011-01-01", freq="H", periods=N, tz="Asia/Tokyo" | |
98 | +"2011-01-01", freq="h", periods=N, tz="Asia/Tokyo" | |
99 | 99 | ), |
100 | 100 | "timestamp[ms][pyarrow]": pd.Index( |
101 | 101 | np.arange(N), dtype=pd.ArrowDtype(pa.timestamp("ms")) |
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -491,7 +491,7 @@ class BinaryOpsMultiIndex: | ||
491 | 491 | param_names = ["func"] |
492 | 492 | |
493 | 493 | def setup(self, func): |
494 | -array = date_range("20200101 00:00", "20200102 0:00", freq="S") | |
494 | +array = date_range("20200101 00:00", "20200102 0:00", freq="s") | |
495 | 495 | level_0_names = [str(i) for i in range(30)] |
496 | 496 | |
497 | 497 | index = pd.MultiIndex.from_product([level_0_names, array]) |
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -439,9 +439,9 @@ def setup(self, inplace, dtype): | ||
439 | 439 | N, M = 10000, 100 |
440 | 440 | if dtype in ("datetime64[ns]", "datetime64[ns, tz]", "timedelta64[ns]"): |
441 | 441 | data = { |
442 | -"datetime64[ns]": date_range("2011-01-01", freq="H", periods=N), | |
442 | +"datetime64[ns]": date_range("2011-01-01", freq="h", periods=N), | |
443 | 443 | "datetime64[ns, tz]": date_range( |
444 | -"2011-01-01", freq="H", periods=N, tz="Asia/Tokyo" | |
444 | +"2011-01-01", freq="h", periods=N, tz="Asia/Tokyo" | |
445 | 445 | ), |
446 | 446 | "timedelta64[ns]": timedelta_range(start="1 day", periods=N, freq="1D"), |
447 | 447 | } |
@@ -649,7 +649,7 @@ def time_series_nunique_nan(self): | ||
649 | 649 | class Duplicated: |
650 | 650 | def setup(self): |
651 | 651 | n = 1 << 20 |
652 | -t = date_range("2015-01-01", freq="S", periods=(n // 64)) | |
652 | +t = date_range("2015-01-01", freq="s", periods=(n // 64)) | |
653 | 653 | xs = np.random.randn(n // 64).round(2) |
654 | 654 | self.df = DataFrame( |
655 | 655 | { |
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -212,7 +212,7 @@ def run(dti): | ||
212 | 212 | def time_datetime_to_period(self): |
213 | 213 | @test_parallel(num_threads=2) |
214 | 214 | def run(dti): |
215 | -dti.to_period("S") | |
215 | +dti.to_period("s") | |
216 | 216 | |
217 | 217 | run(self.dti) |
218 | 218 |
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -238,7 +238,7 @@ def time_series_nth(self, dtype): | ||
238 | 238 | |
239 | 239 | class DateAttributes: |
240 | 240 | def setup(self): |
241 | -rng = date_range("1/1/2000", "12/31/2005", freq="H") | |
241 | +rng = date_range("1/1/2000", "12/31/2005", freq="h") | |
242 | 242 | self.year, self.month, self.day = rng.year, rng.month, rng.day |
243 | 243 | self.ts = Series(np.random.randn(len(rng)), index=rng) |
244 | 244 |
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -232,7 +232,7 @@ def setup(self, index): | ||
232 | 232 | N = 100000 |
233 | 233 | indexes = { |
234 | 234 | "int": Index(np.arange(N), dtype=np.int64), |
235 | -"datetime": date_range("2011-01-01", freq="S", periods=N), | |
235 | +"datetime": date_range("2011-01-01", freq="s", periods=N), | |
236 | 236 | } |
237 | 237 | index = indexes[index] |
238 | 238 | self.s = Series(np.random.rand(N), index=index) |
@@ -465,7 +465,7 @@ def time_loc_row(self, unique_cols): | ||
465 | 465 | class AssignTimeseriesIndex: |
466 | 466 | def setup(self): |
467 | 467 | N = 100000 |
468 | -idx = date_range("1/1/2000", periods=N, freq="H") | |
468 | +idx = date_range("1/1/2000", periods=N, freq="h") | |
469 | 469 | self.df = DataFrame(np.random.randn(N, 1), columns=["A"], index=idx) |
470 | 470 | |
471 | 471 | def time_frame_assign_timeseries_index(self): |
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -164,7 +164,7 @@ def time_unique_date_strings(self, cache, count): | ||
164 | 164 | |
165 | 165 | class ToDatetimeISO8601: |
166 | 166 | def setup(self): |
167 | -rng = date_range(start="1/1/2000", periods=20000, freq="H") | |
167 | +rng = date_range(start="1/1/2000", periods=20000, freq="h") | |
168 | 168 | self.strings = rng.strftime("%Y-%m-%d %H:%M:%S").tolist() |
169 | 169 | self.strings_nosep = rng.strftime("%Y%m%d %H:%M:%S").tolist() |
170 | 170 | self.strings_tz_space = [ |
@@ -276,7 +276,7 @@ def time_dup_string_tzoffset_dates(self, cache): | ||
276 | 276 | # GH 43901 |
277 | 277 | class ToDatetimeInferDatetimeFormat: |
278 | 278 | def setup(self): |
279 | -rng = date_range(start="1/1/2000", periods=100000, freq="H") | |
279 | +rng = date_range(start="1/1/2000", periods=100000, freq="h") | |
280 | 280 | self.strings = rng.strftime("%Y-%m-%d %H:%M:%S").tolist() |
281 | 281 | |
282 | 282 | def time_infer_datetime_format(self): |
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -89,7 +89,7 @@ class ToCSVDatetimeIndex(BaseIO): | ||
89 | 89 | fname = "__test__.csv" |
90 | 90 | |
91 | 91 | def setup(self): |
92 | -rng = date_range("2000", periods=100_000, freq="S") | |
92 | +rng = date_range("2000", periods=100_000, freq="s") | |
93 | 93 | self.data = DataFrame({"a": 1}, index=rng) |
94 | 94 | |
95 | 95 | def time_frame_date_formatting_index(self): |
@@ -102,15 +102,15 @@ def time_frame_date_no_format_index(self): | ||
102 | 102 | class ToCSVPeriod(BaseIO): |
103 | 103 | fname = "__test__.csv" |
104 | 104 | |
105 | -params = ([1000, 10000], ["D", "H"]) | |
105 | +params = ([1000, 10000], ["D", "h"]) | |
106 | 106 | param_names = ["nobs", "freq"] |
107 | 107 | |
108 | 108 | def setup(self, nobs, freq): |
109 | 109 | rng = period_range(start="2000-01-01", periods=nobs, freq=freq) |
110 | 110 | self.data = DataFrame(rng) |
111 | 111 | if freq == "D": |
112 | 112 | self.default_fmt = "%Y-%m-%d" |
113 | -elif freq == "H": | |
113 | +elif freq == "h": | |
114 | 114 | self.default_fmt = "%Y-%m-%d %H:00" |
115 | 115 | |
116 | 116 | def time_frame_period_formatting_default(self, nobs, freq): |
@@ -130,15 +130,15 @@ def time_frame_period_formatting(self, nobs, freq): | ||
130 | 130 | class ToCSVPeriodIndex(BaseIO): |
131 | 131 | fname = "__test__.csv" |
132 | 132 | |
133 | -params = ([1000, 10000], ["D", "H"]) | |
133 | +params = ([1000, 10000], ["D", "h"]) | |
134 | 134 | param_names = ["nobs", "freq"] |
135 | 135 | |
136 | 136 | def setup(self, nobs, freq): |
137 | 137 | rng = period_range(start="2000-01-01", periods=nobs, freq=freq) |
138 | 138 | self.data = DataFrame({"a": 1}, index=rng) |
139 | 139 | if freq == "D": |
140 | 140 | self.default_fmt = "%Y-%m-%d" |
141 | -elif freq == "H": | |
141 | +elif freq == "h": | |
142 | 142 | self.default_fmt = "%Y-%m-%d %H:00" |
143 | 143 | |
144 | 144 | def time_frame_period_formatting_index(self, nobs, freq): |
@@ -253,7 +253,7 @@ class ReadCSVConcatDatetime(StringIORewind): | ||
253 | 253 | iso8601 = "%Y-%m-%d %H:%M:%S" |
254 | 254 | |
255 | 255 | def setup(self): |
256 | -rng = date_range("1/1/2000", periods=50000, freq="S") | |
256 | +rng = date_range("1/1/2000", periods=50000, freq="s") | |
257 | 257 | self.StringIO_input = StringIO("\n".join(rng.strftime(self.iso8601).tolist())) |
258 | 258 | |
259 | 259 | def time_read_csv(self): |
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -25,7 +25,7 @@ def _generate_dataframe(): | ||
25 | 25 | df = DataFrame( |
26 | 26 | np.random.randn(N, C), |
27 | 27 | columns=[f"float{i}" for i in range(C)], |
28 | -index=date_range("20000101", periods=N, freq="H"), | |
28 | +index=date_range("20000101", periods=N, freq="h"), | |
29 | 29 | ) |
30 | 30 | df["object"] = tm.makeStringIndex(N) |
31 | 31 | return df |
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -122,7 +122,7 @@ def setup(self, format): | ||
122 | 122 | self.df = DataFrame( |
123 | 123 | np.random.randn(N, C), |
124 | 124 | columns=[f"float{i}" for i in range(C)], |
125 | -index=date_range("20000101", periods=N, freq="H"), | |
125 | +index=date_range("20000101", periods=N, freq="h"), | |
126 | 126 | ) |
127 | 127 | self.df["object"] = tm.makeStringIndex(N) |
128 | 128 | self.df.to_hdf(self.fname, "df", format=format) |
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -26,7 +26,7 @@ def setup(self, orient, index): | ||
26 | 26 | N = 100000 |
27 | 27 | indexes = { |
28 | 28 | "int": np.arange(N), |
29 | -"datetime": date_range("20000101", periods=N, freq="H"), | |
29 | +"datetime": date_range("20000101", periods=N, freq="h"), | |
30 | 30 | } |
31 | 31 | df = DataFrame( |
32 | 32 | np.random.randn(N, 5), |
@@ -48,7 +48,7 @@ def setup(self, index): | ||
48 | 48 | N = 100000 |
49 | 49 | indexes = { |
50 | 50 | "int": np.arange(N), |
51 | -"datetime": date_range("20000101", periods=N, freq="H"), | |
51 | +"datetime": date_range("20000101", periods=N, freq="h"), | |
52 | 52 | } |
53 | 53 | df = DataFrame( |
54 | 54 | np.random.randn(N, 5), |
@@ -108,7 +108,7 @@ class ToJSON(BaseIO): | ||
108 | 108 | def setup(self, orient, frame): |
109 | 109 | N = 10**5 |
110 | 110 | ncols = 5 |
111 | -index = date_range("20000101", periods=N, freq="H") | |
111 | +index = date_range("20000101", periods=N, freq="h") | |
112 | 112 | timedeltas = timedelta_range(start=1, periods=N, freq="s") |
113 | 113 | datetimes = date_range(start=1, periods=N, freq="s") |
114 | 114 | ints = np.random.randint(100000000, size=N) |
@@ -191,7 +191,7 @@ class ToJSONISO(BaseIO): | ||
191 | 191 | |
192 | 192 | def setup(self, orient): |
193 | 193 | N = 10**5 |
194 | -index = date_range("20000101", periods=N, freq="H") | |
194 | +index = date_range("20000101", periods=N, freq="h") | |
195 | 195 | timedeltas = timedelta_range(start=1, periods=N, freq="s") |
196 | 196 | datetimes = date_range(start=1, periods=N, freq="s") |
197 | 197 | self.df = DataFrame( |
@@ -214,7 +214,7 @@ class ToJSONLines(BaseIO): | ||
214 | 214 | def setup(self): |
215 | 215 | N = 10**5 |
216 | 216 | ncols = 5 |
217 | -index = date_range("20000101", periods=N, freq="H") | |
217 | +index = date_range("20000101", periods=N, freq="h") | |
218 | 218 | timedeltas = timedelta_range(start=1, periods=N, freq="s") |
219 | 219 | datetimes = date_range(start=1, periods=N, freq="s") |
220 | 220 | ints = np.random.randint(100000000, size=N) |
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -20,7 +20,7 @@ def setup(self): | ||
20 | 20 | self.df = DataFrame( |
21 | 21 | np.random.randn(N, C), |
22 | 22 | columns=[f"float{i}" for i in range(C)], |
23 | -index=date_range("20000101", periods=N, freq="H"), | |
23 | +index=date_range("20000101", periods=N, freq="h"), | |
24 | 24 | ) |
25 | 25 | self.df["object"] = tm.makeStringIndex(N) |
26 | 26 | self.df.to_pickle(self.fname) |
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -23,7 +23,7 @@ def setup(self, convert_dates): | ||
23 | 23 | self.df = DataFrame( |
24 | 24 | np.random.randn(N, C), |
25 | 25 | columns=[f"float{i}" for i in range(C)], |
26 | -index=date_range("20000101", periods=N, freq="H"), | |
26 | +index=date_range("20000101", periods=N, freq="h"), | |
27 | 27 | ) |
28 | 28 | self.df["object"] = tm.makeStringIndex(self.N) |
29 | 29 | self.df["int8_"] = np.random.randint( |
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -213,7 +213,7 @@ class JoinNonUnique: | ||
213 | 213 | # GH 6329 |
214 | 214 | def setup(self): |
215 | 215 | date_index = date_range("01-Jan-2013", "23-Jan-2013", freq="min") |
216 | -daily_dates = date_index.to_period("D").to_timestamp("S", "S") | |
216 | +daily_dates = date_index.to_period("D").to_timestamp("s", "s") | |
217 | 217 | self.fracofday = date_index.values - daily_dates.values |
218 | 218 | self.fracofday = self.fracofday.astype("timedelta64[ns]") |
219 | 219 | self.fracofday = self.fracofday.astype(np.float64) / 86_400_000_000_000 |
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -45,7 +45,7 @@ def time_from_ints_daily(self, freq, is_offset): | ||
45 | 45 | |
46 | 46 | class DataFramePeriodColumn: |
47 | 47 | def setup(self): |
48 | -self.rng = period_range(start="1/1/1990", freq="S", periods=20000) | |
48 | +self.rng = period_range(start="1/1/1990", freq="s", periods=20000) | |
49 | 49 | self.df = DataFrame(index=range(len(self.rng))) |
50 | 50 | |
51 | 51 | def time_setitem_period_column(self): |
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -64,7 +64,7 @@ def setup(self, dtype): | ||
64 | 64 | N = 10**6 |
65 | 65 | data = { |
66 | 66 | "int": np.random.randint(1, 10, N), |
67 | -"datetime": date_range("2000-01-01", freq="S", periods=N), | |
67 | +"datetime": date_range("2000-01-01", freq="s", periods=N), | |
68 | 68 | } |
69 | 69 | self.s = Series(data[dtype]) |
70 | 70 | if dtype == "datetime": |
@@ -92,7 +92,7 @@ class Fillna: | ||
92 | 92 | def setup(self, dtype): |
93 | 93 | N = 10**6 |
94 | 94 | if dtype == "datetime64[ns]": |
95 | -data = date_range("2000-01-01", freq="S", periods=N) | |
95 | +data = date_range("2000-01-01", freq="s", periods=N) | |
96 | 96 | na_value = NaT |
97 | 97 | elif dtype in ("float64", "Float64"): |
98 | 98 | data = np.random.randn(N) |
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -53,7 +53,7 @@ def time_frame_datetime_formatting_custom(self, nobs): | ||
53 | 53 | |
54 | 54 | class PeriodStrftime: |
55 | 55 | timeout = 1500 |
56 | -params = ([1000, 10000], ["D", "H"]) | |
56 | +params = ([1000, 10000], ["D", "h"]) | |
57 | 57 | param_names = ["nobs", "freq"] |
58 | 58 | |
59 | 59 | def setup(self, nobs, freq): |
@@ -67,7 +67,7 @@ def setup(self, nobs, freq): | ||
67 | 67 | self.data.set_index("i", inplace=True) |
68 | 68 | if freq == "D": |
69 | 69 | self.default_fmt = "%Y-%m-%d" |
70 | -elif freq == "H": | |
70 | +elif freq == "h": | |
71 | 71 | self.default_fmt = "%Y-%m-%d %H:00" |
72 | 72 | |
73 | 73 | def time_frame_period_to_str(self, nobs, freq): |
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -27,7 +27,7 @@ def setup(self, index_type): | ||
27 | 27 | N = 100000 |
28 | 28 | dtidxes = { |
29 | 29 | "dst": date_range( |
30 | -start="10/29/2000 1:00:00", end="10/29/2000 1:59:59", freq="S" | |
30 | +start="10/29/2000 1:00:00", end="10/29/2000 1:59:59", freq="s" | |
31 | 31 | ), |
32 | 32 | "repeated": date_range(start="2000", periods=N / 10, freq="s").repeat(10), |
33 | 33 | "tz_aware": date_range(start="2000", periods=N, freq="s", tz="US/Eastern"), |
@@ -72,13 +72,13 @@ class TzLocalize: | ||
72 | 72 | |
73 | 73 | def setup(self, tz): |
74 | 74 | dst_rng = date_range( |
75 | -start="10/29/2000 1:00:00", end="10/29/2000 1:59:59", freq="S" | |
75 | +start="10/29/2000 1:00:00", end="10/29/2000 1:59:59", freq="s" | |
76 | 76 | ) |
77 | -self.index = date_range(start="10/29/2000", end="10/29/2000 00:59:59", freq="S") | |
77 | +self.index = date_range(start="10/29/2000", end="10/29/2000 00:59:59", freq="s") | |
78 | 78 | self.index = self.index.append(dst_rng) |
79 | 79 | self.index = self.index.append(dst_rng) |
80 | 80 | self.index = self.index.append( |
81 | -date_range(start="10/29/2000 2:00:00", end="10/29/2000 3:00:00", freq="S") | |
81 | +date_range(start="10/29/2000 2:00:00", end="10/29/2000 3:00:00", freq="s") | |
82 | 82 | ) |
83 | 83 | |
84 | 84 | def time_infer_dst(self, tz): |
@@ -90,7 +90,7 @@ class ResetIndex: | ||
90 | 90 | param_names = "tz" |
91 | 91 | |
92 | 92 | def setup(self, tz): |
93 | -idx = date_range(start="1/1/2000", periods=1000, freq="H", tz=tz) | |
93 | +idx = date_range(start="1/1/2000", periods=1000, freq="h", tz=tz) | |
94 | 94 | self.df = DataFrame(np.random.randn(1000, 2), index=idx) |
95 | 95 | |
96 | 96 | def time_reset_datetimeindex(self, tz): |
@@ -255,7 +255,7 @@ def time_get_slice(self, monotonic): | ||
255 | 255 | class Lookup: |
256 | 256 | def setup(self): |
257 | 257 | N = 1500000 |
258 | -rng = date_range(start="1/1/2000", periods=N, freq="S") | |
258 | +rng = date_range(start="1/1/2000", periods=N, freq="s") | |
259 | 259 | self.ts = Series(1, index=rng) |
260 | 260 | self.lookup_val = rng[N // 2] |
261 | 261 |