DOC: standardizing docstrings to use pd.DataFrame (#18788) · pandas-dev/pandas@b5f1e71 (original) (raw)
`@@ -2304,7 +2304,7 @@ def query(self, expr, inplace=False, **kwargs):
`
2304
2304
` --------
`
2305
2305
` >>> from numpy.random import randn
`
2306
2306
` >>> from pandas import DataFrame
`
2307
``
`-
df = DataFrame(randn(10, 2), columns=list('ab'))
`
``
2307
`+
df = pd.DataFrame(randn(10, 2), columns=list('ab'))
`
2308
2308
` >>> df.query('a > b')
`
2309
2309
` >>> df[df.a > df.b] # same result as the previous expression
`
2310
2310
` """
`
`@@ -2368,7 +2368,7 @@ def eval(self, expr, inplace=False, **kwargs):
`
2368
2368
` --------
`
2369
2369
` >>> from numpy.random import randn
`
2370
2370
` >>> from pandas import DataFrame
`
2371
``
`-
df = DataFrame(randn(10, 2), columns=list('ab'))
`
``
2371
`+
df = pd.DataFrame(randn(10, 2), columns=list('ab'))
`
2372
2372
` >>> df.eval('a + b')
`
2373
2373
` >>> df.eval('c = a + b')
`
2374
2374
` """
`
`@@ -2664,7 +2664,7 @@ def assign(self, **kwargs):
`
2664
2664
``
2665
2665
` Examples
`
2666
2666
` --------
`
2667
``
`-
df = DataFrame({'A': range(1, 11), 'B': np.random.randn(10)})
`
``
2667
`+
df = pd.DataFrame({'A': range(1, 11), 'B': np.random.randn(10)})
`
2668
2668
``
2669
2669
`` Where the value is a callable, evaluated on df
:
``
2670
2670
``
`@@ -3780,9 +3780,9 @@ def nlargest(self, n, columns, keep='first'):
`
3780
3780
``
3781
3781
` Examples
`
3782
3782
` --------
`
3783
``
`-
df = DataFrame({'a': [1, 10, 8, 11, -1],
`
3784
``
`-
... 'b': list('abdce'),
`
3785
``
`-
... 'c': [1.0, 2.0, np.nan, 3.0, 4.0]})
`
``
3783
`+
df = pd.DataFrame({'a': [1, 10, 8, 11, -1],
`
``
3784
`+
... 'b': list('abdce'),
`
``
3785
`+
... 'c': [1.0, 2.0, np.nan, 3.0, 4.0]})
`
3786
3786
` >>> df.nlargest(3, 'a')
`
3787
3787
` a b c
`
3788
3788
` 3 11 c 3
`
`@@ -3815,9 +3815,9 @@ def nsmallest(self, n, columns, keep='first'):
`
3815
3815
``
3816
3816
` Examples
`
3817
3817
` --------
`
3818
``
`-
df = DataFrame({'a': [1, 10, 8, 11, -1],
`
3819
``
`-
... 'b': list('abdce'),
`
3820
``
`-
... 'c': [1.0, 2.0, np.nan, 3.0, 4.0]})
`
``
3818
`+
df = pd.DataFrame({'a': [1, 10, 8, 11, -1],
`
``
3819
`+
... 'b': list('abdce'),
`
``
3820
`+
... 'c': [1.0, 2.0, np.nan, 3.0, 4.0]})
`
3821
3821
` >>> df.nsmallest(3, 'a')
`
3822
3822
` a b c
`
3823
3823
` 4 -1 e 4
`
`@@ -5818,7 +5818,7 @@ def quantile(self, q=0.5, axis=0, numeric_only=True,
`
5818
5818
` Examples
`
5819
5819
` --------
`
5820
5820
``
5821
``
`-
df = DataFrame(np.array([[1, 1], [2, 10], [3, 100], [4, 100]]),
`
``
5821
`+
df = pd.DataFrame(np.array([[1, 1], [2, 10], [3, 100], [4, 100]]),
`
5822
5822
` columns=['a', 'b'])
`
5823
5823
` >>> df.quantile(.1)
`
5824
5824
` a 1.3
`
`@@ -5941,7 +5941,7 @@ def isin(self, values):
`
5941
5941
` --------
`
5942
5942
``` When values
is a list:
`5943`
`5943`
``
`5944`
``
`-
>>> df = DataFrame({'A': [1, 2, 3], 'B': ['a', 'b', 'f']})
`
``
`5944`
`+
>>> df = pd.DataFrame({'A': [1, 2, 3], 'B': ['a', 'b', 'f']})
`
`5945`
`5945`
` >>> df.isin([1, 3, 12, 'a'])
`
`5946`
`5946`
` A B
`
`5947`
`5947`
` 0 True True
`
`@@ -5950,7 +5950,7 @@ def isin(self, values):
`
`5950`
`5950`
``
`5951`
`5951`
``` When ``values`` is a dict:
5952
5952
``
5953
``
`-
df = DataFrame({'A': [1, 2, 3], 'B': [1, 4, 7]})
`
``
5953
`+
df = pd.DataFrame({'A': [1, 2, 3], 'B': [1, 4, 7]})
`
5954
5954
` >>> df.isin({'A': [1, 3], 'B': [4, 7, 12]})
`
5955
5955
` A B
`
5956
5956
` 0 True False # Note that B didn't match the 1 here.
`
`@@ -5959,7 +5959,7 @@ def isin(self, values):
`
5959
5959
``
5960
5960
``` When values
is a Series or DataFrame:
```
5961
5961
``
5962
``
`-
df = DataFrame({'A': [1, 2, 3], 'B': ['a', 'b', 'f']})
`
``
5962
`+
df = pd.DataFrame({'A': [1, 2, 3], 'B': ['a', 'b', 'f']})
`
5963
5963
` >>> other = DataFrame({'A': [1, 3, 3, 2], 'B': ['e', 'f', 'f', 'e']})
`
5964
5964
` >>> df.isin(other)
`
5965
5965
` A B
`