DOC: standardizing docstrings to use pd.DataFrame (#18788) · pandas-dev/pandas@b5f1e71 (original) (raw)

`@@ -2304,7 +2304,7 @@ def query(self, expr, inplace=False, **kwargs):

`

2304

2304

` --------

`

2305

2305

` >>> from numpy.random import randn

`

2306

2306

` >>> from pandas import DataFrame

`

2307

``

`-

df = DataFrame(randn(10, 2), columns=list('ab'))

`

``

2307

`+

df = pd.DataFrame(randn(10, 2), columns=list('ab'))

`

2308

2308

` >>> df.query('a > b')

`

2309

2309

` >>> df[df.a > df.b] # same result as the previous expression

`

2310

2310

` """

`

`@@ -2368,7 +2368,7 @@ def eval(self, expr, inplace=False, **kwargs):

`

2368

2368

` --------

`

2369

2369

` >>> from numpy.random import randn

`

2370

2370

` >>> from pandas import DataFrame

`

2371

``

`-

df = DataFrame(randn(10, 2), columns=list('ab'))

`

``

2371

`+

df = pd.DataFrame(randn(10, 2), columns=list('ab'))

`

2372

2372

` >>> df.eval('a + b')

`

2373

2373

` >>> df.eval('c = a + b')

`

2374

2374

` """

`

`@@ -2664,7 +2664,7 @@ def assign(self, **kwargs):

`

2664

2664

``

2665

2665

` Examples

`

2666

2666

` --------

`

2667

``

`-

df = DataFrame({'A': range(1, 11), 'B': np.random.randn(10)})

`

``

2667

`+

df = pd.DataFrame({'A': range(1, 11), 'B': np.random.randn(10)})

`

2668

2668

``

2669

2669

`` Where the value is a callable, evaluated on df:

``

2670

2670

``

`@@ -3780,9 +3780,9 @@ def nlargest(self, n, columns, keep='first'):

`

3780

3780

``

3781

3781

` Examples

`

3782

3782

` --------

`

3783

``

`-

df = DataFrame({'a': [1, 10, 8, 11, -1],

`

3784

``

`-

... 'b': list('abdce'),

`

3785

``

`-

... 'c': [1.0, 2.0, np.nan, 3.0, 4.0]})

`

``

3783

`+

df = pd.DataFrame({'a': [1, 10, 8, 11, -1],

`

``

3784

`+

... 'b': list('abdce'),

`

``

3785

`+

... 'c': [1.0, 2.0, np.nan, 3.0, 4.0]})

`

3786

3786

` >>> df.nlargest(3, 'a')

`

3787

3787

` a b c

`

3788

3788

` 3 11 c 3

`

`@@ -3815,9 +3815,9 @@ def nsmallest(self, n, columns, keep='first'):

`

3815

3815

``

3816

3816

` Examples

`

3817

3817

` --------

`

3818

``

`-

df = DataFrame({'a': [1, 10, 8, 11, -1],

`

3819

``

`-

... 'b': list('abdce'),

`

3820

``

`-

... 'c': [1.0, 2.0, np.nan, 3.0, 4.0]})

`

``

3818

`+

df = pd.DataFrame({'a': [1, 10, 8, 11, -1],

`

``

3819

`+

... 'b': list('abdce'),

`

``

3820

`+

... 'c': [1.0, 2.0, np.nan, 3.0, 4.0]})

`

3821

3821

` >>> df.nsmallest(3, 'a')

`

3822

3822

` a b c

`

3823

3823

` 4 -1 e 4

`

`@@ -5818,7 +5818,7 @@ def quantile(self, q=0.5, axis=0, numeric_only=True,

`

5818

5818

` Examples

`

5819

5819

` --------

`

5820

5820

``

5821

``

`-

df = DataFrame(np.array([[1, 1], [2, 10], [3, 100], [4, 100]]),

`

``

5821

`+

df = pd.DataFrame(np.array([[1, 1], [2, 10], [3, 100], [4, 100]]),

`

5822

5822

` columns=['a', 'b'])

`

5823

5823

` >>> df.quantile(.1)

`

5824

5824

` a 1.3

`

`@@ -5941,7 +5941,7 @@ def isin(self, values):

`

5941

5941

` --------

`

5942

5942

``` When values is a list:


`5943`

`5943`

``

`5944`

``

`-

>>> df = DataFrame({'A': [1, 2, 3], 'B': ['a', 'b', 'f']})

`

``

`5944`

`+

>>> df = pd.DataFrame({'A': [1, 2, 3], 'B': ['a', 'b', 'f']})

`

`5945`

`5945`

` >>> df.isin([1, 3, 12, 'a'])

`

`5946`

`5946`

` A B

`

`5947`

`5947`

` 0 True True

`

`@@ -5950,7 +5950,7 @@ def isin(self, values):

`

`5950`

`5950`

``

`5951`

`5951`

```  When ``values`` is a dict:

5952

5952

``

5953

``

`-

df = DataFrame({'A': [1, 2, 3], 'B': [1, 4, 7]})

`

``

5953

`+

df = pd.DataFrame({'A': [1, 2, 3], 'B': [1, 4, 7]})

`

5954

5954

` >>> df.isin({'A': [1, 3], 'B': [4, 7, 12]})

`

5955

5955

` A B

`

5956

5956

` 0 True False # Note that B didn't match the 1 here.

`

`@@ -5959,7 +5959,7 @@ def isin(self, values):

`

5959

5959

``

5960

5960

``` When values is a Series or DataFrame:

```

5961

5961

``

5962

``

`-

df = DataFrame({'A': [1, 2, 3], 'B': ['a', 'b', 'f']})

`

``

5962

`+

df = pd.DataFrame({'A': [1, 2, 3], 'B': ['a', 'b', 'f']})

`

5963

5963

` >>> other = DataFrame({'A': [1, 3, 3, 2], 'B': ['e', 'f', 'f', 'e']})

`

5964

5964

` >>> df.isin(other)

`

5965

5965

` A B

`