BUG: SparseDataFrame constructor issues · Issue #16807 · pandas-dev/pandas (original) (raw)
I've noticed a bunch of issues with SparseDataFrame's constructor, particularly around support for non-float64
datatypes:
- when
data
is not provided, the default_fill_value is not used to fill the data (noted in passing BUG: SparseDataFrame does not allow single value data #5470):
pd.SparseDataFrame(columns=list("ab"), index=range(4), default_fill_value=0.0) a b 0 NaN NaN 1 NaN NaN 2 NaN NaN 3 NaN NaN
- [ ] when data
is not provided and the dtype
is set to int64
, the constructor call fails
pd.SparseDataFrame(columns=list("ab"), index=range(4), dtype=np.int64) ValueError: cannot convert float NaN to integer
whendata
is an empty sparse matrix withint64
entries and nodtype
is specified, the type of the SparseDataFrame is stillfloat64
. Worse, even whendtype
is specified, it still doesn't work.
pd.SparseDataFrame(coo_matrix((4,3), dtype=np.int64)) 0 1 2 0 NaN NaN NaN 1 NaN NaN NaN 2 NaN NaN NaN 3 NaN NaN NaN pd.SparseDataFrame(coo_matrix((4,3), dtype=np.int64), dtype=np.int64) 0 1 2 0 NaN NaN NaN 1 NaN NaN NaN 2 NaN NaN NaN 3 NaN NaN NaN
probably due to the same issue, given a sparse matrix with underlying elements of typeint64
, if any of the values in a column is0
then that column will be treated asfloat64
s:
pd.SparseDataFrame(coo_matrix(np.arange(12).reshape(4,3), dtype=np.int64)) 0 1 2 0 NaN 1 2 1 3.0 4 5 2 6.0 7 8 3 9.0 10 11
(as long as at least one value is non-zero, then this can be worked around by setting default_fill_value
; however, if all of the values in one column are zero then this no longer works).
Output of pd.show_versions()
INSTALLED VERSIONS
commit: None
python: 3.5.2.final.0
python-bits: 64
OS: Windows
OS-release: 10
machine: AMD64
processor: Intel64 Family 6 Model 63 Stepping 2, GenuineIntel
byteorder: little
LC_ALL: None
LANG: None
LOCALE: None.None
pandas: 0.20.2
pytest: 2.9.2
pip: 8.1.2
setuptools: 27.2.0
Cython: 0.25.2
numpy: 1.13.0
scipy: 0.18.1
xarray: None
IPython: 5.1.0
sphinx: 1.4.6
patsy: 0.4.1
dateutil: 2.5.3
pytz: 2016.6.1
blosc: None
bottleneck: 1.1.0
tables: 3.2.2
numexpr: 2.6.1
feather: None
matplotlib: 2.0.2
openpyxl: 2.3.2
xlrd: 1.0.0
xlwt: 1.1.2
xlsxwriter: 0.9.3
lxml: 3.6.4
bs4: 4.5.1
html5lib: None
sqlalchemy: 1.0.13
pymysql: None
psycopg2: None
jinja2: 2.8
s3fs: None
pandas_gbq: None
pandas_datareader: 0.4.0