str.split on np.nan gives np.nan in one column but None in another column · Issue #18450 · pandas-dev/pandas (original) (raw)

import pandas as pd import numpy as np

s = pd.Series(['19HT|C2', np.nan, '20ZT|C1']) print(s)

0    19HT|C2
1        NaN
2    20ZT|C1
dtype: object

s_split = s.str.split('|', expand=True) print(s_split)

      0     1
0  19HT    C2
1   NaN  None
2  20ZT    C1
0    object
1    object
dtype: object

print(type(s_split.loc[1,0]))

print(type(s_split.loc[1,1]))

Problem description

When np.nan gets split, it becomes np.nan (of type float) in the first column but None (of type NoneType) in the second column. I'd consider this unexpected behavior. How come splitting a value of one type results in two values of different types?

Expected Output

      0     1
0  19HT    C2
1   NaN   NaN
2  20ZT    C1

Either np.nan or None in both columns, but not a mix of both. I'd say np.nan makes most sense, since that's the original value of the row.

Output of pd.show_versions()

INSTALLED VERSIONS

commit: None
python: 3.6.0.final.0
python-bits: 64
OS: Linux
OS-release: 4.10.0-40-generic
machine: x86_64
processor: x86_64
byteorder: little
LC_ALL: None
LANG: en_US.UTF-8
LOCALE: en_US.UTF-8

pandas: 0.21.0
pytest: 3.0.5
pip: 9.0.1
setuptools: 27.2.0
Cython: 0.25.2
numpy: 1.13.1
scipy: 0.19.1
pyarrow: 0.7.1
xarray: None
IPython: 5.1.0
sphinx: 1.5.1
patsy: 0.4.1
dateutil: 2.6.0
pytz: 2016.10
blosc: None
bottleneck: 1.2.1
tables: 3.4.2
numexpr: 2.6.2
feather: 0.4.0
matplotlib: 2.0.2
openpyxl: 2.4.1
xlrd: 1.0.0
xlwt: 1.2.0
xlsxwriter: 0.9.6
lxml: 4.1.1
bs4: 4.5.3
html5lib: 0.9999999
sqlalchemy: 1.1.5
pymysql: None
psycopg2: None
jinja2: 2.9.4
s3fs: None
fastparquet: None
pandas_gbq: None
pandas_datareader: None