BUG: Fix initialization of DataFrame from dict with NaN as key by toobaz · Pull Request #18600 · pandas-dev/pandas (original) (raw)
uhm... those asv results also seem pretty unstable:
before after ratio
[d163de70] [f7447b3f]
+ 30.7±0.2ms 41.1±3ms 1.34 frame_ctor.FromDictwithTimestampOffsets.time_frame_ctor('QuarterBegin', 1)
+ 29.4±0.1ms 39.1±4ms 1.33 frame_ctor.FromDictwithTimestampOffsets.time_frame_ctor('CBMonthBegin', 2)
+ 30.7±0.7ms 40.4±3ms 1.32 frame_ctor.FromDictwithTimestampOffsets.time_frame_ctor('BDay', 2)
+ 31.1±0.7ms 39.1±5ms 1.26 frame_ctor.FromDictwithTimestampOffsets.time_frame_ctor('SemiMonthEnd', 2)
+ 30.4±0.1ms 38.0±4ms 1.25 frame_ctor.FromDictwithTimestampOffsets.time_frame_ctor('Hour', 2)
- 33.8±1ms 30.4±0.8ms 0.90 frame_ctor.FromDictwithTimestampOffsets.time_frame_ctor('Micro', 1)
- 48.3±0.6ms 42.6±0.8ms 0.88 frame_ctor.FromDicts.time_frame_ctor_nested_dict
- 23.8±1ms 20.5±0.2ms 0.86 frame_ctor.FromDictwithTimestampOffsets.time_frame_ctor('FY5253Quarter_1', 2)
- 41.2±0.7ms 30.4±2ms 0.74 frame_ctor.FromDictwithTimestampOffsets.time_frame_ctor('CustomBusinessHour', 2)
- 8.35±0.9ms 6.05±0.01ms 0.72 frame_ctor.FromDictwithTimestampOffsets.time_frame_ctor('FY5253_2', 2)
- 42.4±2ms 30.5±0.5ms 0.72 frame_ctor.FromDictwithTimestampOffsets.time_frame_ctor('BMonthEnd', 2)
SOME BENCHMARKS HAVE CHANGED SIGNIFICANTLY.
I'll try to sort manually and see how it goes.