PERF: groupby rank is slow when tie count is big · Issue #21237 · pandas-dev/pandas (original) (raw)
Code Sample, a copy-pastable example if possible
df = pd.DataFrame({"A":[1,2,3]*10000 ,"B":[1]*30000})
In [31]: %%timeit ...: t = df.groupby("B").rank()
608 ms ± 1.58 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
In [32]: %%timeit ...: t = df.A.rank() 1.27 ms ± 13.6 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
In [33]: %%timeit ...: t = df.groupby("B").apply(pd.Series.rank) ...: 6.51 ms ± 141 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
Problem description
groupby rank is much slower than without groupby when there is a lot of ties
Expected Output
In [42]: df1 = pd.DataFrame({"A":np.random.rand(30000) ,"B":[1]*30000})
In [44]: %%timeit ...: t = df1.groupby("B").apply(pd.Series.rank) ...: 10.1 ms ± 203 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
In [46]: %%timeit ...: t = df1.groupby("B").rank() ...: 4.77 ms ± 111 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
Output of pd.show_versions()
INSTALLED VERSIONS ------------------ commit: 3b770fapython: 3.6.4.final.0 python-bits: 64 OS: Windows OS-release: 7 machine: AMD64 processor: Intel64 Family 6 Model 60 Stepping 3, GenuineIntel byteorder: little LC_ALL: None LANG: zh_CN.UTF-8 LOCALE: None.None
pandas: 0.24.0.dev0+32.g3b770fa07
pytest: 3.3.2
pip: 9.0.1
setuptools: 38.4.0
Cython: 0.27.3
numpy: 1.14.0
scipy: 1.0.0
pyarrow: None
xarray: None
IPython: 6.2.1
sphinx: 1.6.7
patsy: 0.5.0
dateutil: 2.6.1
pytz: 2017.3
blosc: None
bottleneck: 1.2.1
tables: 3.4.2
numexpr: 2.6.4
feather: None
matplotlib: 2.1.2
openpyxl: 2.4.10
xlrd: 1.1.0
xlwt: 1.3.0
xlsxwriter: 1.0.2
lxml: 4.1.1
bs4: 4.6.0
html5lib: 1.0.1
sqlalchemy: 1.2.1
pymysql: 0.7.11.None
psycopg2: None
jinja2: 2.10
s3fs: None
fastparquet: None
pandas_gbq: None
pandas_datareader: None