pd.eval() discards imaginary part in division "/" · Issue #21374 · pandas-dev/pandas (original) (raw)
Code Sample
data = {"a": [1 + 2j], "b": [1 + 1j]} df = pd.DataFrame(data = data) df.eval("a/b")
/usr/local/lib64/python3.6/site-packages/pandas/core/dtypes/cast.py:730: ComplexWarning: Casting complex values to real discards the imaginary part return arr.astype(dtype, copy=True)
0 1.0 dtype: float64
Problem description
The output type was coerced into a float. This also happens by assigning the result to another existing column:
data = {"a": [1 + 2j], "b": [1 + 1j], "c": [1j]} df = pd.DataFrame(data = data) df.eval("c = a/b")
/usr/local/lib64/python3.6/site-packages/pandas/core/dtypes/cast.py:730: ComplexWarning: Casting complex values to real discards the imaginary part return arr.astype(dtype, copy=True) Out[82]: a b c 0 (1+2j) (1+1j) 1.0
And even if the operation is in place:
data = {"a": [1 + 2j], "b": [1 + 1j], "c": [1j]} df = pd.DataFrame(data = data) df.eval("c = a/b", inplace = True) /usr/local/lib64/python3.6/site-packages/pandas/core/dtypes/cast.py:730: ComplexWarning: Casting complex values to real discards the imaginary part return arr.astype(dtype, copy=True)
df a b c 0 (1+2j) (1+1j) 1.0
Expected Output
The expected output is
df["a"]/df["b"]
0 (1.5+0.5j) dtype: complex128
The problem seems to happen only with the "/" operator. In fact, the correct result can be obtained by replacing the division with a multiplication and a negative exponent:
df.eval("ab*(-1)")
0 (1.5+0.5j) dtype: complex128
Output of pd.show_versions()
INSTALLED VERSIONS
commit: None
python: 3.6.5.final.0
python-bits: 64
OS: Linux
OS-release: 4.16.12-300.fc28.x86_64
machine: x86_64
processor: x86_64
byteorder: little
LC_ALL: None
LANG: en_US.utf8
LOCALE: en_US.UTF-8
pandas: 0.23.0
pytest: None
pip: 9.0.3
setuptools: 39.2.0
Cython: None
numpy: 1.14.4
scipy: 1.0.0
pyarrow: None
xarray: None
IPython: 6.4.0
sphinx: None
patsy: 0.4.1
dateutil: 2.7.3
pytz: 2018.4
blosc: None
bottleneck: 1.2.1
tables: 3.4.2
numexpr: 2.6.1
feather: None
matplotlib: 2.2.2
openpyxl: None
xlrd: 1.0.0
xlwt: 1.1.2
xlsxwriter: None
lxml: 4.1.1
bs4: 4.6.0
html5lib: 0.999999999
sqlalchemy: None
pymysql: None
psycopg2: None
jinja2: None
s3fs: None
fastparquet: None
pandas_gbq: None
pandas_datareader: None