to_datetime does not ignore the error when there is NaN before wrong datetime when format is %Y%m%d · Issue #25512 · pandas-dev/pandas (original) (raw)

Code Sample, a copy-pastable example if possible

import pandas as pd

Doesn't work

pd.to_datetime(pd.Series([pd.np.nan, '19750501', '19820001', '19770501']), format='%Y%m%d', errors='coerce') pd.to_datetime(pd.Series(['19750501', pd.np.nan, '19820001', '19770501']), format='%Y%m%d', errors='coerce')

Works

pd.to_datetime(pd.Series(['19750501', '19820001', '19770501']), format='%Y%m%d', errors='coerce')

Works

pd.to_datetime(pd.Series(['19750501', '19820001', pd.np.nan, '19770501']), format='%Y%m%d', errors='coerce')

Problem description

with errors='ignore' or 'coerce', pandas should be able to ignore the wrong datetime '19820001' in it. However, if there is NaN before the wrong datetime, pandas returns error "OverflowError: signed integer is less than minimum"

It only happens when format %Y%m%d

Output of pd.show_versions()

INSTALLED VERSIONS

commit: None
python: 3.6.4.final.0
python-bits: 64
OS: Darwin
OS-release: 18.2.0
machine: x86_64
processor: i386
byteorder: little
LC_ALL: None
LANG: None
LOCALE: en_US.UTF-8
pandas: 0.24.1
pytest: None
pip: 19.0.3
setuptools: 40.8.0
Cython: None
numpy: 1.16.1
scipy: 1.2.1
pyarrow: None
xarray: None
IPython: 7.2.0
sphinx: None
patsy: None
dateutil: 2.7.5
pytz: 2018.9
blosc: None
bottleneck: None
tables: None
numexpr: None
feather: None
matplotlib: None
openpyxl: None
xlrd: 1.2.0
xlwt: None
xlsxwriter: None
lxml.etree: None
bs4: None
html5lib: None
sqlalchemy: 1.2.17
pymysql: 0.9.3
psycopg2: 2.7.7 (dt dec pq3 ext lo64)
jinja2: 2.10
s3fs: None
fastparquet: None
pandas_gbq: None
pandas_datareader: None
gcsfs: None