BUG: np.min(pd.Index) and np.max(pd.Index) raise a TypeError · Issue #26125 · pandas-dev/pandas (original) (raw)
Code Sample, a copy-pastable example if possible
In [1]: import numpy as np; import pandas as pd
In [2]: np.version, pd.version Out[2]: ('1.16.2', '0.25.0.dev0+421.g8b60ebb359')
In [3]: idx = pd.Index([10, 20, 11]); idx Out[3]: Int64Index([10, 20, 11], dtype='int64')
In [4]: np.min(idx)
TypeError: min() got an unexpected keyword argument 'out'
In [5]: np.max(idx)
TypeError: max() got an unexpected keyword argument 'out'
Note that other numpy functions work fine:
In [6]: np.sum(idx), np.prod(idx), np.argmax(idx), np.argmin(idx) Out[6]: (41, 2200, 1, 0)
And np.min
and np.max
work on other pandas data structures:
In [7]: s = pd.Series([10, 20, 11])
In [8]: np.min(s), np.max(s) Out[8]: (10, 20)
In [9]: df = pd.DataFrame({'A': [10, 20, 11], 'B': [3, 1, 4]})
In [10]: np.min(df) Out[10]: A 10 B 1 dtype: int64
In [11]: np.max(df) Out[11]: A 20 B 4 dtype: int64
Problem description
Both np.min
and np.max
raise a TypeError
when applied to a pd.Index
. Using pd.Index.min
and pd.Index.max
is more idiomatic for pandas, but using the numpy equivalent functions should work, as they do for other pandas data structures.
Expected Output
I'd expect np.min(pd.Index)
and np.max(pd.Index)
to be equivalent to pd.Index.min
and pd.Index.max
, as is the case with other pandas data structures.
Output of pd.show_versions()
INSTALLED VERSIONS
commit: 8b60ebb
python: 3.6.8.final.0
python-bits: 64
OS: Windows
OS-release: 10
machine: AMD64
processor: Intel64 Family 6 Model 78 Stepping 3, GenuineIntel
byteorder: little
LC_ALL: None
LANG: None
LOCALE: None.None
pandas: 0.25.0.dev0+421.g8b60ebb359
pytest: 4.2.0
pip: 19.0.1
setuptools: 40.6.3
Cython: 0.28.2
numpy: 1.16.2
scipy: 1.2.1
pyarrow: 0.6.0
xarray: 0.9.6
IPython: 7.2.0
sphinx: 1.8.2
patsy: 0.4.1
dateutil: 2.6.0
pytz: 2017.2
blosc: None
bottleneck: 1.2.1
tables: 3.4.2
numexpr: 2.6.9
feather: 0.4.0
matplotlib: 2.0.2
openpyxl: 2.4.8
xlrd: 1.1.0
xlwt: 1.3.0
xlsxwriter: 0.9.8
lxml.etree: 3.8.0
bs4: None
html5lib: 0.999
sqlalchemy: 1.1.13
pymysql: None
psycopg2: None
jinja2: 2.9.6
s3fs: None
fastparquet: 0.1.5
pandas_gbq: None
pandas_datareader: None
gcsfs: None