Bug: Joining MultiIndex with NaNs · Issue #29252 · pandas-dev/pandas (original) (raw)
Code Sample, a copy-pastable example if possible
import numpy as np import pandas as pd
df1 = pd.DataFrame(data={'col1': [1.1, 1.2]}, index=pd.MultiIndex.from_product([['A'], [1.0, 2.0]], names=['id1', 'id2'])) df2 = pd.DataFrame(data={'col2': [2.1, 2.2]}, index=pd.MultiIndex.from_product([['A'], [np.NaN, 2.0]], names=['id1', 'id2'])) print(df1.join(df2))
Problem description
The index containing the NaN value of df2
is falsely joined with the index of df1
. Therefore, the result contains both values of df2
instead of only one value and a NaN value.
Expected Output
col1 col2
id1 id2
A 1.0 1.1 NaN
2.0 1.2 2.2
The expected result was returned by older pandas versions (successfully tested with 0.18.1 ; 0.20.3 ; 0.21.1 ; 0.22.0).
Actual Output
col1 col2
id1 id2
A 1.0 1.1 2.1
2.0 1.2 2.2
This result is returned by newer pandas versions, beginning with version 0.23.0 (tested with 0.23.0 ; 0.23.4 ; 0.24.2 ; 0.25.2).
I suppose this is a bug, or am I missing something?
Output of pd.show_versions()
INSTALLED VERSIONS
commit : None
python : 3.7.2.final.0
python-bits : 64
OS : Windows
OS-release : 10
machine : AMD64
processor : Intel64 Family 6 Model 94 Stepping 3, GenuineIntel
byteorder : little
LC_ALL : None
LANG : None
LOCALE : None.None
pandas : 0.25.2
numpy : 1.16.2
pytz : 2018.9
dateutil : 2.8.0
pip : 19.0.3
setuptools : 40.8.0
Cython : None
pytest : None
hypothesis : None
sphinx : None
blosc : None
feather : None
xlsxwriter : None
lxml.etree : None
html5lib : None
pymysql : None
psycopg2 : None
jinja2 : None
IPython : None
pandas_datareader: None
bs4 : None
bottleneck : None
fastparquet : None
gcsfs : None
lxml.etree : None
matplotlib : None
numexpr : None
odfpy : None
openpyxl : None
pandas_gbq : None
pyarrow : None
pytables : None
s3fs : None
scipy : None
sqlalchemy : None
tables : None
xarray : None
xlrd : None
xlwt : None
xlsxwriter : None