BUG: Index.astype does not localize to UTC first like Series.astype with datetime64[ns, tz] dtypes · Issue #33401 · pandas-dev/pandas (original) (raw)
- I have checked that this issue has not already been reported.
- I have confirmed this bug exists on the latest version of pandas.
- (optional) I have confirmed this bug exists on the master branch of pandas.
Code Sample, a copy-pastable example
In [4]: pd.__version__
Out[4]: '1.1.0.dev0+1202.g1de2cf1ac'
In [5]: pd.Series([pd.Timestamp('2020-01-01 15:00')]).astype('datetime64[ns, EST]')
Out[5]:
0 2020-01-01 10:00:00-05:00
dtype: datetime64[ns, EST]
In [6]: pd.Index([pd.Timestamp('2020-01-01 15:00')]).astype('datetime64[ns, EST]')
Out[6]: DatetimeIndex(['2020-01-01 15:00:00-05:00'], dtype='datetime64[ns, EST]', freq=None)
Problem description
Out[5]
is the expected output as documented in https://pandas.pydata.org/docs/user_guide/timeseries.html#time-zone-series-operations. Out[6]
should align therefore with Out[5]
Expected Output
In [6]: pd.Index([pd.Timestamp('2020-01-01 15:00')]).astype('datetime64[ns, EST]')
Out[6]: DatetimeIndex(['2020-01-01 10:00:00-05:00'], dtype='datetime64[ns, EST]', freq=None)