BUG: DataFrame.agg with multiple cum functions creates wrong result · Issue #35490 · pandas-dev/pandas (original) (raw)


Note: Please read this guide detailing how to provide the necessary information for us to reproduce your bug.

Code Sample, a copy-pastable example

Your code here

In [1]: import pandas as pd

In [2]: df1 = pd.DataFrame({ ...: 'a': [3, 4, 5, 3, 5, 4, 1, 2, 3], ...: 'b': [1, 3, 4, 5, 6, 5, 4, 4, 4], ...: 'c': list('aabaaddce'), ...: 'd': [3, 4, 5, 3, 5, 4, 1, 2, 3], ...: 'e': [1, 3, 4, 5, 6, 5, 4, 4, 4], ...: 'f': list('aabaaddce'), ...: })

In [3]: df1.groupby('b').agg(['cummax', 'cumsum'])
Out[3]: a d e
cummax cumsum cummax cumsum cummax cumsum b
1 4 4 4 4 3 3 3 3 3 3 3 5 5 4 5 5 5 5 6 6 5 4 7 4 7 5 10 6 5 6 5 6 4 8

Cumulative functions should generate the DataFrame with the same length.

Problem description

[this should explain why the current behaviour is a problem and why the expected output is a better solution]

In pandas 1.0.5, the result is

In [1]: import pandas as pd

In [2]: df1 = pd.DataFrame({ ...: 'a': [3, 4, 5, 3, 5, 4, 1, 2, 3], ...: 'b': [1, 3, 4, 5, 6, 5, 4, 4, 4], ...: 'c': list('aabaaddce'), ...: 'd': [3, 4, 5, 3, 5, 4, 1, 2, 3], ...: 'e': [1, 3, 4, 5, 6, 5, 4, 4, 4], ...: 'f': list('aabaaddce'), ...: })

In [3]: df1.groupby('b').agg(['cummax', 'cumsum'])
Out[3]: a d e
cummax cumsum cummax cumsum cummax cumsum 0 3 3 3 3 1 1 1 4 4 4 4 3 3 2 5 5 5 5 4 4 3 3 3 3 3 5 5 4 5 5 5 5 6 6 5 4 7 4 7 5 10 6 5 6 5 6 4 8 7 5 8 5 8 4 12 8 5 11 5 11 4 16

Expected Output

Output of pd.show_versions()

In [5]: pd.show_versions()

/Users/qinxuye/miniconda3/envs/test_pandas_1.1/lib/python3.7/site-packages/setuptools/distutils_patch.py:26: UserWarning: Distutils was imported before Setuptools. This usage is discouraged and may exhibit undesirable behaviors or errors. Please use Setuptools' objects directly or at least import Setuptools first.
"Distutils was imported before Setuptools. This usage is discouraged "

ImportError Traceback (most recent call last)
in
----> 1 pd.show_versions()

~/miniconda3/envs/test_pandas_1.1/lib/python3.7/site-packages/pandas/util/_print_versions.py in show_versions(as_json)
104 """
105 sys_info = _get_sys_info()
--> 106 deps = _get_dependency_info()
107
108 if as_json:

~/miniconda3/envs/test_pandas_1.1/lib/python3.7/site-packages/pandas/util/_print_versions.py in _get_dependency_info()
82 for modname in deps:
83 mod = import_optional_dependency(
---> 84 modname, raise_on_missing=False, on_version="ignore"
85 )
86 result[modname] = _get_version(mod) if mod else None

~/miniconda3/envs/test_pandas_1.1/lib/python3.7/site-packages/pandas/compat/_optional.py in import_optional_dependency(name, extra, raise_on_missing, on_version)
97 minimum_version = VERSIONS.get(name)
98 if minimum_version:
---> 99 version = _get_version(module)
100 if distutils.version.LooseVersion(version) < minimum_version:
101 assert on_version in {"warn", "raise", "ignore"}

~/miniconda3/envs/test_pandas_1.1/lib/python3.7/site-packages/pandas/compat/_optional.py in _get_version(module)
42
43 if version is None:
---> 44 raise ImportError(f"Can't determine version for {module.name}")
45 return version
46

ImportError: Can't determine version for numba